No Arabic abstract
In this paper, we propose Selective Output Smoothing Regularization, a novel regularization method for training the Convolutional Neural Networks (CNNs). Inspired by the diverse effects on training from different samples, Selective Output Smoothing Regularization improves the performance by encouraging the model to produce equal logits on incorrect classes when dealing with samples that the model classifies correctly and over-confidently. This plug-and-play regularization method can be conveniently incorporated into almost any CNN-based project without extra hassle. Extensive experiments have shown that Selective Output Smoothing Regularization consistently achieves significant improvement in image classification benchmarks, such as CIFAR-100, Tiny ImageNet, ImageNet, and CUB-200-2011. Particularly, our method obtains 77.30$%$ accuracy on ImageNet with ResNet-50, which gains 1.1$%$ than baseline (76.2$%$). We also empirically demonstrate the ability of our method to make further improvements when combining with other widely used regularization techniques. On Pascal detection, using the SOSR-trained ImageNet classifier as the pretrained model leads to better detection performances. Moreover, we demonstrate the effectiveness of our method in small sample size problem and imbalanced dataset problem.
A deep neural network model is a powerful framework for learning representations. Usually, it is used to learn the relation $x to y$ by exploiting the regularities in the input $x$. In structured output prediction problems, $y$ is multi-dimensional and structural relations often exist between the dimensions. The motivation of this work is to learn the output dependencies that may lie in the output data in order to improve the prediction accuracy. Unfortunately, feedforward networks are unable to exploit the relations between the outputs. In order to overcome this issue, we propose in this paper a regularization scheme for training neural networks for these particular tasks using a multi-task framework. Our scheme aims at incorporating the learning of the output representation $y$ in the training process in an unsupervised fashion while learning the supervised mapping function $x to y$. We evaluate our framework on a facial landmark detection problem which is a typical structured output task. We show over two public challenging datasets (LFPW and HELEN) that our regularization scheme improves the generalization of deep neural networks and accelerates their training. The use of unlabeled data and label-only data is also explored, showing an additional improvement of the results. We provide an opensource implementation (https://github.com/sbelharbi/structured-output-ae) of our framework.
Bayesian neural network (BNN) priors are defined in parameter space, making it hard to encode prior knowledge expressed in function space. We formulate a prior that incorporates functional constraints about what the output can or cannot be in regions of the input space. Output-Constrained BNNs (OC-BNN) represent an interpretable approach of enforcing a range of constraints, fully consistent with the Bayesian framework and amenable to black-box inference. We demonstrate how OC-BNNs improve model robustness and prevent the prediction of infeasible outputs in two real-world applications of healthcare and robotics.
Crowd scene analysis receives growing attention due to its wide applications. Grasping the accurate crowd location (rather than merely crowd count) is important for spatially identifying high-risk regions in congested scenes. In this paper, we propose a Compressed Sensing based Output Encoding (CSOE) scheme, which casts detecting pixel coordinates of small objects into a task of signal regression in encoding signal space. CSOE helps to boost localization performance in circumstances where targets are highly crowded without huge scale variation. In addition, proper receptive field sizes are crucial for crowd analysis due to human size variations. We create Multiple Dilated Convolution Branches (MDCB) that offers a set of different receptive field sizes, to improve localization accuracy when objects sizes change drastically in an image. Also, we develop an Adaptive Receptive Field Weighting (ARFW) module, which further deals with scale variation issue by adaptively emphasizing informative channels that have proper receptive field size. Experiments demonstrate the effectiveness of the proposed method, which achieves state-of-the-art performance across four mainstream datasets, especially achieves excellent results in highly crowded scenes. More importantly, experiments support our insights that it is crucial to tackle target size variation issue in crowd analysis task, and casting crowd localization as regression in encoding signal space is quite effective for crowd analysis.
Domains where supervised models are deployed often come with task-specific constraints, such as prior expert knowledge on the ground-truth function, or desiderata like safety and fairness. We introduce a novel probabilistic framework for reasoning with such constraints and formulate a prior that enables us to effectively incorporate them into Bayesian neural networks (BNNs), including a variant that can be amortized over tasks. The resulting Output-Constrained BNN (OC-BNN) is fully consistent with the Bayesian framework for uncertainty quantification and is amenable to black-box inference. Unlike typical BNN inference in uninterpretable parameter space, OC-BNNs widen the range of functional knowledge that can be incorporated, especially for model users without expertise in machine learning. We demonstrate the efficacy of OC-BNNs on real-world datasets, spanning multiple domains such as healthcare, criminal justice, and credit scoring.
Deep neural networks have achieved state-of-the-art performance on various tasks. However, lack of interpretability and transparency makes it easier for malicious attackers to inject trojan backdoor into the neural networks, which will make the model behave abnormally when a backdoor sample with a specific trigger is input. In this paper, we propose NeuronInspect, a framework to detect trojan backdoors in deep neural networks via output explanation techniques. NeuronInspect first identifies the existence of backdoor attack targets by generating the explanation heatmap of the output layer. We observe that generated heatmaps from clean and backdoored models have different characteristics. Therefore we extract features that measure the attributes of explanations from an attacked model namely: sparse, smooth and persistent. We combine these features and use outlier detection to figure out the outliers, which is the set of attack targets. We demonstrate the effectiveness and efficiency of NeuronInspect on MNIST digit recognition dataset and GTSRB traffic sign recognition dataset. We extensively evaluate NeuronInspect on different attack scenarios and prove better robustness and effectiveness over state-of-the-art trojan backdoor detection techniques Neural Cleanse by a great margin.