No Arabic abstract
Domains where supervised models are deployed often come with task-specific constraints, such as prior expert knowledge on the ground-truth function, or desiderata like safety and fairness. We introduce a novel probabilistic framework for reasoning with such constraints and formulate a prior that enables us to effectively incorporate them into Bayesian neural networks (BNNs), including a variant that can be amortized over tasks. The resulting Output-Constrained BNN (OC-BNN) is fully consistent with the Bayesian framework for uncertainty quantification and is amenable to black-box inference. Unlike typical BNN inference in uninterpretable parameter space, OC-BNNs widen the range of functional knowledge that can be incorporated, especially for model users without expertise in machine learning. We demonstrate the efficacy of OC-BNNs on real-world datasets, spanning multiple domains such as healthcare, criminal justice, and credit scoring.
Bayesian neural network (BNN) priors are defined in parameter space, making it hard to encode prior knowledge expressed in function space. We formulate a prior that incorporates functional constraints about what the output can or cannot be in regions of the input space. Output-Constrained BNNs (OC-BNN) represent an interpretable approach of enforcing a range of constraints, fully consistent with the Bayesian framework and amenable to black-box inference. We demonstrate how OC-BNNs improve model robustness and prevent the prediction of infeasible outputs in two real-world applications of healthcare and robotics.
A deep neural network model is a powerful framework for learning representations. Usually, it is used to learn the relation $x to y$ by exploiting the regularities in the input $x$. In structured output prediction problems, $y$ is multi-dimensional and structural relations often exist between the dimensions. The motivation of this work is to learn the output dependencies that may lie in the output data in order to improve the prediction accuracy. Unfortunately, feedforward networks are unable to exploit the relations between the outputs. In order to overcome this issue, we propose in this paper a regularization scheme for training neural networks for these particular tasks using a multi-task framework. Our scheme aims at incorporating the learning of the output representation $y$ in the training process in an unsupervised fashion while learning the supervised mapping function $x to y$. We evaluate our framework on a facial landmark detection problem which is a typical structured output task. We show over two public challenging datasets (LFPW and HELEN) that our regularization scheme improves the generalization of deep neural networks and accelerates their training. The use of unlabeled data and label-only data is also explored, showing an additional improvement of the results. We provide an opensource implementation (https://github.com/sbelharbi/structured-output-ae) of our framework.
Variational Bayesian neural networks (BNNs) perform variational inference over weights, but it is difficult to specify meaningful priors and approximate posteriors in a high-dimensional weight space. We introduce functional variational Bayesian neural networks (fBNNs), which maximize an Evidence Lower BOund (ELBO) defined directly on stochastic processes, i.e. distributions over functions. We prove that the KL divergence between stochastic processes equals the supremum of marginal KL divergences over all finite sets of inputs. Based on this, we introduce a practical training objective which approximates the functional ELBO using finite measurement sets and the spectral Stein gradient estimator. With fBNNs, we can specify priors entailing rich structures, including Gaussian processes and implicit stochastic processes. Empirically, we find fBNNs extrapolate well using various structured priors, provide reliable uncertainty estimates, and scale to large datasets.
We study probabilistic safety for Bayesian Neural Networks (BNNs) under adversarial input perturbations. Given a compact set of input points, $T subseteq mathbb{R}^m$, we study the probability w.r.t. the BNN posterior that all the points in $T$ are mapped to the same region $S$ in the output space. In particular, this can be used to evaluate the probability that a network sampled from the BNN is vulnerable to adversarial attacks. We rely on relaxation techniques from non-convex optimization to develop a method for computing a lower bound on probabilistic safety for BNNs, deriving explicit procedures for the case of interval and linear function propagation techniques. We apply our methods to BNNs trained on a regression task, airborne collision avoidance, and MNIST, empirically showing that our approach allows one to certify probabilistic safety of BNNs with millions of parameters.
With few exceptions, neural networks have been relying on backpropagation and gradient descent as the inference engine in order to learn the model parameters, because the closed-form Bayesian inference for neural networks has been considered to be intractable. In this paper, we show how we can leverage the tractable approximate Gaussian inferences (TAGI) capabilities to infer hidden states, rather than only using it for inferring the networks parameters. One novel aspect it allows is to infer hidden states through the imposition of constraints designed to achieve specific objectives, as illustrated through three examples: (1) the generation of adversarial-attack examples, (2) the usage of a neural network as a black-box optimization method, and (3) the application of inference on continuous-action reinforcement learning. These applications showcase how tasks that were previously reserved to gradient-based optimization approaches can now be approached with analytically tractable inference