Do you want to publish a course? Click here

NeuronInspect: Detecting Backdoors in Neural Networks via Output Explanations

70   0   0.0 ( 0 )
 Added by Xijie Huang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Deep neural networks have achieved state-of-the-art performance on various tasks. However, lack of interpretability and transparency makes it easier for malicious attackers to inject trojan backdoor into the neural networks, which will make the model behave abnormally when a backdoor sample with a specific trigger is input. In this paper, we propose NeuronInspect, a framework to detect trojan backdoors in deep neural networks via output explanation techniques. NeuronInspect first identifies the existence of backdoor attack targets by generating the explanation heatmap of the output layer. We observe that generated heatmaps from clean and backdoored models have different characteristics. Therefore we extract features that measure the attributes of explanations from an attacked model namely: sparse, smooth and persistent. We combine these features and use outlier detection to figure out the outliers, which is the set of attack targets. We demonstrate the effectiveness and efficiency of NeuronInspect on MNIST digit recognition dataset and GTSRB traffic sign recognition dataset. We extensively evaluate NeuronInspect on different attack scenarios and prove better robustness and effectiveness over state-of-the-art trojan backdoor detection techniques Neural Cleanse by a great margin.

rate research

Read More

Intuitively, a backdoor attack against Deep Neural Networks (DNNs) is to inject hidden malicious behaviors into DNNs such that the backdoor model behaves legitimately for benign inputs, yet invokes a predefined malicious behavior when its input contains a malicious trigger. The trigger can take a plethora of forms, including a special object present in the image (e.g., a yellow pad), a shape filled with custom textures (e.g., logos with particular colors) or even image-wide stylizations with special filters (e.g., images altered by Nashville or Gotham filters). These filters can be applied to the original image by replacing or perturbing a set of image pixels.
Deep learning is gaining importance in many applications. However, Neural Networks face several security and privacy threats. This is particularly significant in the scenario where Cloud infrastructures deploy a service with Neural Network model at the back end. Here, an adversary can extract the Neural Network parameters, infer the regularization hyperparameter, identify if a data point was part of the training data, and generate effective transferable adversarial examples to evade classifiers. This paper shows how a Neural Network model is susceptible to timing side channel attack. In this paper, a black box Neural Network extraction attack is proposed by exploiting the timing side channels to infer the depth of the network. Although, constructing an equivalent architecture is a complex search problem, it is shown how Reinforcement Learning with knowledge distillation can effectively reduce the search space to infer a target model. The proposed approach has been tested with VGG architectures on CIFAR10 data set. It is observed that it is possible to reconstruct substitute models with test accuracy close to the target models and the proposed approach is scalable and independent of type of Neural Network architectures.
69 - Ximing Qiao , Yukun Yang , Hai Li 2019
Neural backdoor attack is emerging as a severe security threat to deep learning, while the capability of existing defense methods is limited, especially for complex backdoor triggers. In the work, we explore the space formed by the pixel values of all possible backdoor triggers. An original trigger used by an attacker to build the backdoored model represents only a point in the space. It then will be generalized into a distribution of valid triggers, all of which can influence the backdoored model. Thus, previous methods that model only one point of the trigger distribution is not sufficient. Getting the entire trigger distribution, e.g., via generative modeling, is a key to effective defense. However, existing generative modeling techniques for image generation are not applicable to the backdoor scenario as the trigger distribution is completely unknown. In this work, we propose max-entropy staircase approximator (MESA), an algorithm for high-dimensional sampling-free generative modeling and use it to recover the trigger distribution. We also develop a defense technique to remove the triggers from the backdoored model. Our experiments on Cifar10/100 dataset demonstrate the effectiveness of MESA in modeling the trigger distribution and the robustness of the proposed defense method.
Recently, many studies have demonstrated deep neural network (DNN) classifiers can be fooled by the adversarial example, which is crafted via introducing some perturbations into an original sample. Accordingly, some powerful defense techniques were proposed. However, existing defense techniques often require modifying the target model or depend on the prior knowledge of attacks. In this paper, we propose a straightforward method for detecting adversarial image examples, which can be directly deployed into unmodified off-the-shelf DNN models. We consider the perturbation to images as a kind of noise and introduce two classic image processing techniques, scalar quantization and smoothing spatial filter, to reduce its effect. The image entropy is employed as a metric to implement an adaptive noise reduction for different kinds of images. Consequently, the adversarial example can be effectively detected by comparing the classification results of a given sample and its denoised version, without referring to any prior knowledge of attacks. More than 20,000 adversarial examples against some state-of-the-art DNN models are used to evaluate the proposed method, which are crafted with different attack techniques. The experiments show that our detection method can achieve a high overall F1 score of 96.39% and certainly raises the bar for defense-aware attacks.
374 - Mingfu Xue , Yinghao Wu , Zhiyu Wu 2021
Recent researches show that deep learning model is susceptible to backdoor attacks. Many defenses against backdoor attacks have been proposed. However, existing defense works require high computational overhead or backdoor attack information such as the trigger size, which is difficult to satisfy in realistic scenarios. In this paper, a novel backdoor detection method based on adversarial examples is proposed. The proposed method leverages intentional adversarial perturbations to detect whether an image contains a trigger, which can be applied in both the training stage and the inference stage (sanitize the training set in training stage and detect the backdoor instances in inference stage). Specifically, given an untrusted image, the adversarial perturbation is added to the image intentionally. If the prediction of the model on the perturbed image is consistent with that on the unperturbed image, the input image will be considered as a backdoor instance. Compared with most existing defense works, the proposed adversarial perturbation based method requires low computational resources and maintains the visual quality of the images. Experimental results show that, the backdoor detection rate of the proposed defense method is 99.63%, 99.76% and 99.91% on Fashion-MNIST, CIFAR-10 and GTSRB datasets, respectively. Besides, the proposed method maintains the visual quality of the image as the l2 norm of the added perturbation are as low as 2.8715, 3.0513 and 2.4362 on Fashion-MNIST, CIFAR-10 and GTSRB datasets, respectively. In addition, it is also demonstrated that the proposed method can achieve high defense performance against backdoor attacks under different attack settings (trigger transparency, trigger size and trigger pattern). Compared with the existing defense work (STRIP), the proposed method has better detection performance on all the three datasets, and is more efficient than STRIP.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا