Do you want to publish a course? Click here

Multi-Facet Recommender Networks with Spherical Optimization

72   0   0.0 ( 0 )
 Added by Yanchao Tan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Implicit feedback is widely explored by modern recommender systems. Since the feedback is often sparse and imbalanced, it poses great challenges to the learning of complex interactions among users and items. Metric learning has been proposed to capture user-item interactions from implicit feedback, but existing methods only represent users and items in a single metric space, ignoring the fact that users can have multiple preferences and items can have multiple properties, which leads to potential conflicts limiting their performance in recommendation. To capture the multiple facets of user preferences and item properties while resolving their potential conflicts, we propose the novel framework of Multi-fAcet Recommender networks with Spherical optimization (MARS). By designing a cross-facet similarity measurement, we project users and items into multiple metric spaces for fine-grained representation learning, and compare them only in the proper spaces. Furthermore, we devise a spherical optimization strategy to enhance the effectiveness and robustness of the multi-facet recommendation framework. Extensive experiments on six real-world benchmark datasets show drastic performance gains brought by MARS, which constantly achieves up to 40% improvements over the state-of-the-art baselines regarding both HR and nDCG metrics.



rate research

Read More

150 - Anna Wroblewska 2020
Recommendation systems have lately been popularized globally, with primary use cases in online interaction systems, with significant focus on e-commerce platforms. We have developed a machine learning-based recommendation platform, which can be easily applied to almost any items and/or actions domain. Contrary to existing recommendation systems, our platform supports multiple types of interaction data with multiple modalities of metadata natively. This is achieved through multi-modal fusion of various data representations. We deployed the platform into multiple e-commerce stores of different kinds, e.g. food and beverages, shoes, fashion items, telecom operators. Here, we present our system, its flexibility and performance. We also show benchmark results on open datasets, that significantly outperform state-of-the-art prior work.
Recommendations with personalized explanations have been shown to increase user trust and perceived quality and help users make better decisions. Moreover, such explanations allow users to provide feedback by critiquing them. Several algorithms for recommender systems with multi-step critiquing have therefore been developed. However, providing a user-friendly interface based on personalized explanations and critiquing has not been addressed in the last decade. In this paper, we introduce four different web interfaces (available under https://lia.epfl.ch/critiquing/) helping users making decisions and finding their ideal item. We have chosen the hotel recommendation domain as a use case even though our approach is trivially adaptable for other domains. Moreover, our system is model-agnostic (for both recommender systems and critiquing models) allowing a great flexibility and further extensions. Our interfaces are above all a useful tool to help research in recommendation with critiquing. They allow to test such systems on a real use case and also to highlight some limitations of these approaches to find solutions to overcome them.
Owing to the superiority of GNN in learning on graph data and its efficacy in capturing collaborative signals and sequential patterns, utilizing GNN techniques in recommender systems has gain increasing interests in academia and industry. In this survey, we provide a comprehensive review of the most recent works on GNN-based recommender systems. We proposed a classification scheme for organizing existing works. For each category, we briefly clarify the main issues, and detail the corresponding strategies adopted by the representative models. We also discuss the advantages and limitations of the existing strategies. Furthermore, we suggest several promising directions for future researches. We hope this survey can provide readers with a general understanding of the recent progress in this field, and shed some light on future developments.
Recent studies have shown that providing personalized explanations alongside recommendations increases trust and perceived quality. Furthermore, it gives users an opportunity to refine the recommendations by critiquing parts of the explanations. On one hand, current recommender systems model the recommendation, explanation, and critiquing objectives jointly, but this creates an inherent trade-off between their respective performance. On the other hand, although recent latent linear critiquing approaches are built upon an existing recommender system, they suffer from computational inefficiency at inference due to the objective optimized at each conversations turn. We address these deficiencies with M&Ms-VAE, a novel variational autoencoder for recommendation and explanation that is based on multimodal modeling assumptions. We train the model under a weak supervision scheme to simulate both fully and partially observed variables. Then, we leverage the generalization ability of a trained M&Ms-VAE model to embed the user preference and the critique separately. Our works most important innovation is our critiquing module, which is built upon and trained in a self-supervised manner with a simple ranking objective. Experiments on four real-world datasets demonstrate that among state-of-the-art models, our system is the first to dominate or match the performance in terms of recommendation, explanation, and multi-step critiquing. Moreover, M&Ms-VAE processes the critiques up to 25.6x faster than the best baselines. Finally, we show that our model infers coherent joint and cross generation, even under weak supervision, thanks to our multimodal-based modeling and training scheme.
In modern recommender systems, both users and items are associated with rich side information, which can help understand users and items. Such information is typically heterogeneous and can be roughly categorized into flat and hierarchical side information. While side information has been proved to be valuable, the majority of existing systems have exploited either only flat side information or only hierarchical side information due to the challenges brought by the heterogeneity. In this paper, we investigate the problem of exploiting heterogeneous side information for recommendations. Specifically, we propose a novel framework jointly captures flat and hierarchical side information with mathematical coherence. We demonstrate the effectiveness of the proposed framework via extensive experiments on various real-world datasets. Empirical results show that our approach is able to lead a significant performance gain over the state-of-the-art methods.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا