No Arabic abstract
Masked language models have revolutionized natural language processing systems in the past few years. A recently introduced generalization of masked language models called warped language models are trained to be more robust to the types of errors that appear in automatic or manual transcriptions of spoken language by exposing the language model to the same types of errors during training. In this work we propose a novel approach that takes advantage of the robustness of warped language models to transcription noise for correcting transcriptions of spoken language. We show that our proposed approach is able to achieve up to 10% reduction in word error rates of both automatic and manual transcriptions of spoken language.
Quality of data plays an important role in most deep learning tasks. In the speech community, transcription of speech recording is indispensable. Since the transcription is usually generated artificially, automatically finding errors in manual transcriptions not only saves time and labors but benefits the performance of tasks that need the training process. Inspired by the success of hybrid automatic speech recognition using both language model and acoustic model, two approaches of automatic error detection in the transcriptions have been explored in this work. Previous study using a biased language model approach, relying on a strong transcription-dependent language model, has been reviewed. In this work, we propose a novel acoustic model based approach, focusing on the phonetic sequence of speech. Both methods have been evaluated on a completely real dataset, which was originally transcribed with errors and strictly corrected manually afterwards.
Recent work in automatic recognition of conversational telephone speech (CTS) has achieved accuracy levels comparable to human transcribers, although there is some debate how to precisely quantify human performance on this task, using the NIST 2000 CTS evaluation set. This raises the question what systematic differences, if any, may be found differentiating human from machine transcription errors. In this paper we approach this question by comparing the output of our most accurate CTS recognition system to that of a standard speech transcription vendor pipeline. We find that the most frequent substitution, deletion and insertion error types of both outputs show a high degree of overlap. The only notable exception is that the automatic recognizer tends to confuse filled pauses (uh) and backchannel acknowledgments (uhhuh). Humans tend not to make this error, presumably due to the distinctive and opposing pragmatic functions attached to these words. Furthermore, we quantify the correlation between human and machine errors at the speaker level, and investigate the effect of speaker overlap between training and test data. Finally, we report on an informal Turing test asking humans to discriminate between automatic and human transcription error cases.
We study semantic parsing in an interactive setting in which users correct errors with natural language feedback. We present NL-EDIT, a model for interpreting natural language feedback in the interaction context to generate a sequence of edits that can be applied to the initial parse to correct its errors. We show that NL-EDIT can boost the accuracy of existing text-to-SQL parsers by up to 20% with only one turn of correction. We analyze the limitations of the model and discuss directions for improvement and evaluation. The code and datasets used in this paper are publicly available at http://aka.ms/NLEdit.
The conventional paradigm in speech translation starts with a speech recognition step to generate transcripts, followed by a translation step with the automatic transcripts as input. To address various shortcomings of this paradigm, recent work explores end-to-end trainable direct models that translate without transcribing. However, transcripts can be an indispensable output in practical applications, which often display transcripts alongside the translations to users. We make this common requirement explicit and explore the task of jointly transcribing and translating speech. While high accuracy of transcript and translation are crucial, even highly accurate systems can suffer from inconsistencies between both outputs that degrade the user experience. We introduce a methodology to evaluate consistency and compare several modeling approaches, including the traditional cascaded approach and end-to-end models. We find that direct models are poorly suited to the joint transcription/translation task, but that end-to-end models that feature a coupled inference procedure are able to achieve strong consistency. We further introduce simple techniques for directly optimizing for consistency, and analyze the resulting trade-offs between consistency, transcription accuracy, and translation accuracy.
With the growing prevalence of psychological interventions, it is vital to have measures which rate the effectiveness of psychological care to assist in training, supervision, and quality assurance of services. Traditionally, quality assessment is addressed by human raters who evaluate recorded sessions along specific dimensions, often codified through constructs relevant to the approach and domain. This is however a cost-prohibitive and time-consuming method that leads to poor feasibility and limited use in real-world settings. To facilitate this process, we have developed an automated competency rating tool able to process the raw recorded audio of a session, analyzing who spoke when, what they said, and how the health professional used language to provide therapy. Focusing on a use case of a specific type of psychotherapy called Motivational Interviewing, our system gives comprehensive feedback to the therapist, including information about the dynamics of the session (e.g., therapists vs. clients talking time), low-level psychological language descriptors (e.g., type of questions asked), as well as other high-level behavioral constructs (e.g., the extent to which the therapist understands the clients perspective). We describe our platform and its performance using a dataset of more than 5,000 recordings drawn from its deployment in a real-world clinical setting used to assist training of new therapists. Widespread use of automated psychotherapy rating tools may augment experts capabilities by providing an avenue for more effective training and skill improvement, eventually leading to more positive clinical outcomes.