Do you want to publish a course? Click here

Twisted monolayer and bilayer graphene for vertical tunneling transistors

100   0   0.0 ( 0 )
 Added by Davit Ghazaryan Dr
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We prepare twist-controlled resonant tunneling transistors consisting of monolayer (Gr) and Bernal bilayer (BGr) graphene electrodes separated by a thin layer of hexagonal boron nitride (hBN). The resonant conditions are achieved by closely aligning the crystallographic orientation of the graphene electrodes, which leads to momentum conservation for tunneling electrons at certain bias voltages. Under such conditions, negative differential conductance (NDC) can be achieved. Application of in-plane magnetic field leads to electrons acquiring additional momentum during the tunneling process, which allows control over the resonant conditions.



rate research

Read More

We investigate the band structure of twisted monolayer-bilayer graphene (tMBG), or twisted graphene on bilayer graphene (tGBG), as a function of twist angles and perpendicular electric fields in search of optimum conditions for achieving isolated nearly flat bands. Narrow bandwidths comparable or smaller than the effective Coulomb energies satisfying $U_{textrm{eff}} /W gtrsim 1$ are expected for twist angles in the range of $0.3^{circ} sim 1.5^{circ}$, more specifically in islands around $theta sim 0.5^{circ}, , 0.85^{circ}, ,1.3^{circ}$ for appropriate perpendicular electric field magnitudes and directions. The valley Chern numbers of the electron-hole asymmetric bands depend intrinsically on the details of the hopping terms in the bilayer graphene, and extrinsically on factors like electric fields or average staggered potentials in the graphene layer aligned with the contacting hexagonal boron nitride substrate. This tunability of the band isolation, bandwidth, and valley Chern numbers makes of tMBG a more versatile system than twisted bilayer graphene for finding nearly flat bands prone to strong correlations.
Twisted van der Waals (vdW) heterostructures have recently emerged as an attractive platform to study tunable correlated electron systems. However, the quantum mechanical nature of vdW heterostructures makes their theoretical and experimental exploration laborious and expensive. Here we present a simple platform to mimic the behavior of twisted vdW heterostructures using acoustic metamaterials comprising of interconnected air cavities in a steel plate. Our classical analog of twisted bilayer graphene shows much of the same behavior as its quantum counterpart, including mode localization at a magic angle of about 1.1 degrees. By tuning the thickness of the interlayer membrane, we reach a regime of strong interactions more than three times higher than the feasible range of twisted bilayer graphene under pressure. In this regime, we find the magic angle as high as 6.01 degrees, corresponding to a far denser array of localized modes in real space and further increasing their interaction strength. Our results broaden the capabilities for cross-talk between quantum mechanics and acoustics, as vdW metamaterials can be used both as simplified models for exploring quantum systems and as a means for translating interesting quantum effects into acoustics.
We describe the weak localization correction to conductivity in ultra-thin graphene films, taking into account disorder scattering and the influence of trigonal warping of the Fermi surface. A possible manifestation of the chiral nature of electrons in the localization properties is hampered by trigonal warping, resulting in a suppression of the weak anti-localization effect in monolayer graphene and of weak localization in bilayer graphene. Intervalley scattering due to atomically sharp scatterers in a realistic graphene sheet or by edges in a narrow wire tends to restore weak localization resulting in negative magnetoresistance in both materials.
Using terahertz time-domain spectroscopy, the real part of optical conductivity [$sigma_{1}(omega)$] of twisted bilayer graphene was obtained at different temperatures (10 -- 300 K) in the frequency range 0.3 -- 3 THz. On top of a Drude-like response, we see a strong peak in $sigma_{1} (omega)$ at $sim$2.7 THz. We analyze the overall Drude-like response using a disorder-dependent (unitary scattering) model, then attribute the peak at 2.7 THz to an enhanced density of states at that energy, that is caused by the presence of a van Hove singularity arising from a commensurate twisting of the two graphene layers.
Flatbands with extremely narrow bandwidths on the order of a few mili-electron volts can appear in twisted multilayer graphene systems for appropriate system parameters. Here we investigate the electronic structure of a twisted bi-bilayer graphene, or twisted double bilayer graphene, to find the parameter space where isolated flatbands can emerge as a function of twist angle, vertical pressure, and interlayer potential differences. We find that in twisted bi-bilayer graphene the bandwidth is generally flatter than in twisted bilayer graphene by roughly up to a factor of two in the same parameter space of twist angle $theta$ and interlayer coupling $omega$, making it in principle simpler to tailor narrow bandwidth flatbands. Application of vertical pressure can enhance the first magic angle in minimal models at $theta sim 1.05^{circ}$ to larger values of up to $theta sim 1.5^{circ}$ when $ P sim 2.5$~GPa, where $theta propto omega/ upsilon_{F}$. Narrow bandwidths are expected in bi-bilayers for a continuous range of small twist angles, i.e. without magic angles, when intrinsic bilayer gaps open by electric fields, or due to remote hopping terms. We find that moderate vertical electric fields can contribute in lifting the degeneracy of the low energy flatbands by enhancing the primary gap near the Dirac point and the secondary gap with the higher energy bands. Distinct valley Chern bands are expected near $0^{circ}$ or $180^{circ}$ alignments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا