We describe the weak localization correction to conductivity in ultra-thin graphene films, taking into account disorder scattering and the influence of trigonal warping of the Fermi surface. A possible manifestation of the chiral nature of electrons in the localization properties is hampered by trigonal warping, resulting in a suppression of the weak anti-localization effect in monolayer graphene and of weak localization in bilayer graphene. Intervalley scattering due to atomically sharp scatterers in a realistic graphene sheet or by edges in a narrow wire tends to restore weak localization resulting in negative magnetoresistance in both materials.
We have performed the first experimental investigation of quantum interference corrections to the conductivity of a bilayer graphene structure. A negative magnetoresistance - a signature of weak localisation - is observed at different carrier densities, including the electro-neutrality region. It is very different, however, from the weak localisation in conventional two-dimensional systems. We show that it is controlled not only by the dephasing time, but also by different elastic processes that break the effective time-reversal symmetry and provide invervalley scattering.
A theoretical study of the magnetoelectronic properties of zigzag and armchair bilayer graphene nanoribbons (BGNs) is presented. Using the recursive Greens function method, we study the band structure of BGNs in uniform perpendicular magnetic fields and discuss the zero-temperature conductance for the corresponding clean systems. The conductance quantized as 2(n+1)G_ for the zigzag edges and nG_0 for the armchair edges with G_{0}=2e^2/h being the conductance unit and $n$ an integer. Special attention is paid to the effects of edge disorder. As in the case of monolayer graphene nanoribbons (GNR), a small degree of edge disorder is already sufficient to induce a transport gap around the neutrality point. We further perform comparative studies of the transport gap E_g and the localization length in bilayer and monolayer nanoribbons. While for the GNRs E_{g}^{GNR}is proportional to 1/W, the corresponding transport gap E_{g}^{BGN} for the bilayer ribbons shows a more rapid decrease as the ribbon width W is increased. We also demonstrate that the evolution of localization lengths with the Fermi energy shows two distinct regimes. Inside the transport gap, xi is essentially independent on energy and the states in the BGNs are significantly less localized than those in the corresponding GNRs. Outside the transport gap xi grows rapidly as the Fermi energy increases and becomes very similar for BGNs and GNRs.
In this theoretical study, we explore the manner in which the quantum correction due to weak localization is suppressed in weakly-disordered graphene, when it is subjected to the application of a non-zero voltage. Using a nonequilibrium Green function approach, we address the scattering generated by the disorder up to the level of the maximally crossed diagrams, hereby capturing the interference among different, impurity-defined, Feynman paths. Our calculations of the charge current, and of the resulting differential conductance, reveal the logarithmic divergence typical of weak localization in linear transport. The main finding of our work is that the applied voltage suppresses the weak localization contribution in graphene, by introducing a dephasing time that decreases inversely with increasing voltage.
A new type of long-range ordering in the absence of translational symmetry gives rise to drastic revolution of our common knowledge in condensed matter physics. Quasicrystal, as such unconventional system, became a plethora to test our insights and to find exotic states of matter. In particular, electronic properties in quasicrystal have gotten lots of attention along with their experimental realization and controllability in twisted bilayer systems. In this work, we study how quasicrystalline order in bilayer systems can induce unique localization of electrons without any extrinsic disorders. We focus on dodecagonal quasicrystal that has been demonstrated in twisted bilayer graphene system in recent experiments. In the presence of small gap, we show the localization generically occurs due to non-periodic nature of quasicrystal, which is evidenced by the inverse participation ratio and the energy level statistics. We understand the origin of such localization by approximating the dodecagonal quasicrystals as an impurity scattering problem.
We study charge transport in one-dimensional graphene superlattices created by applying layered periodic and disordered potentials. It is shown that the transport and spectral properties of such structures are strongly anisotropic. In the direction perpendicular to the layers, the eigenstates in a disordered sample are delocalized for all energies and provide a minimal non-zero conductivity, which cannot be destroyed by disorder, no matter how strong this is. However, along with extended states, there exist discrete sets of angles and energies with exponentially localized eigenfunctions (disorder-induced resonances). It is shown that, depending on the type of the unperturbed system, the disorder could either suppress or enhance the transmission. Most remarkable properties of the transmission have been found in graphene systems built of alternating p-n and n-p junctions. This transmission has anomalously narrow angular spectrum and, surprisingly, in some range of directions it is practically independent of the amplitude of fluctuations of the potential. Owing to these features, such samples could be used as building blocks in tunable electronic circuits. To better understand the physical implications of the results presented here, most of our results have been contrasted with those for analogous wave systems. Along with similarities, a number of quite surprising differences have been found.