Do you want to publish a course? Click here

Quantum effects on plasma screening for thermonuclear reactions in laser-generated plasmas

62   0   0.0 ( 0 )
 Added by Yuanbin Wu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

A quantum plasma screening model based on the density matrix formalism is used to investigate theoretically the thermonuclear reactions $^{13}$C($alpha$, $n$)$^{16}$O and $^2$H($d$, $n$)$^3$He in laser-generated plasmas over a large range of densities and temperatures. We find that for cold and dense (solid-state density) plasmas, the quantum model predicts plasma screening enhancement factors up to one order of magnitude larger than the ones from classical plasma models. Our results indicate that quantum effects can enhance the plasma screening for thermonuclear reactions, with potential also for industrial fusion energy gain. We put forward a possible experimental test of the screening theory in laser-generated plasmas which could also confirm predictions from nuclear astrophysics.



rate research

Read More

We analyze enhancement of thermonuclear fusion reactions due to strong plasma screening in dense matter using a simple electron drop model. The model assumes fusion in a potential that is screened by an effective electron cloud around colliding nuclei (extended Salpeter ion-sphere model). We calculate the mean field screened Coulomb potentials for atomic nuclei with equal and nonequal charges, appropriate astrophysical S factors, and enhancement factors of reaction rates. As a byproduct, we study analytic behavior of the screening potential at small separations between the reactants. In this model, astrophysical S factors depend not only on nuclear physics but on plasma screening as well. The enhancement factors are in good agreement with calculations by other methods. This allows us to formulate the combined, pure analytic model of strong plasma screening in thermonuclear reactions. The results can be useful for simulating nuclear burning in white dwarfs and neutron stars.
158 - C. Labaune 2013
The advent of high-intensity pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei, by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments.
A non-equilibrium model for laser-induced plasmas is used to describe how nano-second temporal mode-beating affects plasma kernel formation and growth in quiescent air. The chemically reactive Navier-Stokes equations describe the hydrodynamics, and non-equilibrium effects are modeled based on a two-temperature model. Inverse Bremsstrahlung and multiphoton ionization are self-consistently taken into account via a coupled solution of the equations governing plasma dynamics and beam propagation and attenuation (i.e., Radiative Transfer Equation). This strategy, despite the additional challenges it may bring, allows to minimize empiricism and enables for more accurate simulations since it does not require an artificial plasma seed to trigger breakdown. The benefits of this methodology are demonstrated by the good agreement between the predicted and the experimental plasma boundary evolution and absorbed energy. The same goes for the periodic plasma kernel structures which, as suggested by experiments and confirmed by the simulations discussed here, are linked to the modulating frequency.
Relativistic mirrors can be realized with strongly nonlinear Langmuir waves excited by intense laser pulses in underdense plasma. On reflection from the relativistic mirror the incident light affects the mirror motion. The corresponding recoil effects are investigated analytically and with particle-in-cell simulations. It is found that if the fluence of the incident electromagnetic wave exceeds a certain threshold, the relativistic mirror undergoes a significant back reaction and splits into multiple electron layers. The reflection coefficient of the relativistic mirror as well as the factors of electric field amplification and frequency upshift of the electromagnetic wave are obtained.
We developed an experimental platform for studying magnetic reconnection in an external magnetic field with simultaneous measurements of plasma imaging, flow velocity, and magnetic-field variation. Here, we investigate the stagnation and acceleration in counter-streaming plasmas generated by high-power laser beams. A plasma flow perpendicular to the initial flow directions is measured with laser Thomson scattering. The flow is, interestingly, accelerated toward the high-density region, which is opposite to the direction of the acceleration by pressure gradients. This acceleration is possibly interpreted by the interaction of two magnetic field loops initially generated by Biermann battery effect, resulting in a magnetic reconnection forming a single field loop and additional acceleration by a magnetic tension force.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا