No Arabic abstract
A non-equilibrium model for laser-induced plasmas is used to describe how nano-second temporal mode-beating affects plasma kernel formation and growth in quiescent air. The chemically reactive Navier-Stokes equations describe the hydrodynamics, and non-equilibrium effects are modeled based on a two-temperature model. Inverse Bremsstrahlung and multiphoton ionization are self-consistently taken into account via a coupled solution of the equations governing plasma dynamics and beam propagation and attenuation (i.e., Radiative Transfer Equation). This strategy, despite the additional challenges it may bring, allows to minimize empiricism and enables for more accurate simulations since it does not require an artificial plasma seed to trigger breakdown. The benefits of this methodology are demonstrated by the good agreement between the predicted and the experimental plasma boundary evolution and absorbed energy. The same goes for the periodic plasma kernel structures which, as suggested by experiments and confirmed by the simulations discussed here, are linked to the modulating frequency.
A model of an electron-beam-plasma system is introduced to model the electrical breakdown physics of low-pressure nitrogen irradiated by an intense pulsed electron beam. The rapidly rising beam current induces an electric field which drives a return current in the plasma. The rigid-beam model is a reduction of the problem geometry to cylindrical coordinates and simplifications to Maxwells equations that are driven by a prescribed electron beam current density. The model is convenient for comparing various reductions of the plasma dynamics and plasma chemistry while maintaining a good approximation to the overall magnitude of the beam-created electric field. The usefulness of this model is demonstrated by coupling the rigid-beam model to a fluid plasma model and a simplified nitrogen plasma chemistry. The dynamics of this coupled system are computed for a range of background gas pressures, and the results are compared with experimental measurements. At pressures 1 Torr and above, the simulated line-integrated electron densities are within a factor of two of measurements, and show the same trend with pressure as observed in experiment.
The robustness of a structured collimation device is discussed for an intense-laser-produced ion beam. In this paper the ion beam collimation is realized by the solid structured collimation device, which produces the transverse electric field; the electric field contributes to reduce the ion beam transverse velocity and collimate the ion beam. Our 2.5 dimensional particle-in cell simulations demonstrate that the collimation device is rather robust against the changes in the laser parameters and the collimation target sizes. The intense short-pulse lasers are now available, and are used to generate an ion beam. The issues in the laser ion acceleration include an ion beam collimation, ion energy spectrum control, ion production efficiency, ion energy control, ion beam bunching, etc. The laser-produced ion beam tends to expand in the transverse and longitudinal directions during the ion beam propagation. The ion beam collimation is focused in this paper.
A quantum plasma screening model based on the density matrix formalism is used to investigate theoretically the thermonuclear reactions $^{13}$C($alpha$, $n$)$^{16}$O and $^2$H($d$, $n$)$^3$He in laser-generated plasmas over a large range of densities and temperatures. We find that for cold and dense (solid-state density) plasmas, the quantum model predicts plasma screening enhancement factors up to one order of magnitude larger than the ones from classical plasma models. Our results indicate that quantum effects can enhance the plasma screening for thermonuclear reactions, with potential also for industrial fusion energy gain. We put forward a possible experimental test of the screening theory in laser-generated plasmas which could also confirm predictions from nuclear astrophysics.
We investigate the strongly correlated ion dynamics and the degree of coupling achievable in the evolution of freely expanding ultracold neutral plasmas. We demonstrate that the ionic Coulomb coupling parameter $Gamma_{rm i}$ increases considerably in later stages of the expansion, reaching the strongly coupled regime despite the well-known initial drop of $Gamma_{rm i}$ to order unity due to disorder-induced heating. Furthermore, we formulate a suitable measure of correlation and show th at $Gamma_{rm i}$ calculated from the ionic temperature and density reflects the degree of order in the system if it is sufficiently close to a quasisteady state. At later times, however, the expansion of the plasma cloud becomes faster than the relaxation of correlations, and the system does not reach thermodynamic equilibrium anymore.
The Faraday effect, caused by a magnetic-field-induced change in the optical properties, takes place in a vast variety of systems from a single atomic layer of graphenes to huge galaxies. Currently, it plays a pivot role in many applications such as the manipulation of light and the probing of magnetic fields and materials properties. Basically, this effect causes a polarization rotation of light during its propagation along the magnetic field in a medium. Here, we report an extreme case of the Faraday effect where a linearly polarized ultrashort laser pulse splits in time into two circularly polarized pulses of opposite handedness during its propagation in a highly magnetized plasma. This offers a new degree of freedom for manipulating ultrashort and ultrahigh power laser pulses. Together with technologies of ultra-strong magnetic fields, it may pave the way for novel optical devices, such as magnetized plasma polarizers. In addition, it may offer a powerful means to measure strong magnetic fields in laser-produced plasmas.