No Arabic abstract
We developed an experimental platform for studying magnetic reconnection in an external magnetic field with simultaneous measurements of plasma imaging, flow velocity, and magnetic-field variation. Here, we investigate the stagnation and acceleration in counter-streaming plasmas generated by high-power laser beams. A plasma flow perpendicular to the initial flow directions is measured with laser Thomson scattering. The flow is, interestingly, accelerated toward the high-density region, which is opposite to the direction of the acceleration by pressure gradients. This acceleration is possibly interpreted by the interaction of two magnetic field loops initially generated by Biermann battery effect, resulting in a magnetic reconnection forming a single field loop and additional acceleration by a magnetic tension force.
We conduct a multiparametric study of driven magnetic reconnection relevant to recent experiments on colliding magnetized laser produced plasmas using particle-in-cell simulations. Varying the background plasma density, plasma resistivity, and plasma bubble geometry, the 2D simulations demonstrate a rich variety of reconnection behavior and show the coupling between magnetic reconnection and the global hydrodynamical evolution of the system. We consider both the collision between two radially expanding bubbles where reconnection is seeded by the pre-existing X-point, and the collision between two flows in a quasi-1D geometry with initially anti-parallel fields where reconnection must be initiated by the tearing instability. In both geometries, at a baseline case of low-collisionality and low background density, the current sheet is strongly compressed to below scale of the ion-skin-depth scale, and rapid, multi-plasmoid reconnection results. Increasing the plasma resistivity, we observe a collisional slow-down of reconnection and stabilization of plasmoid instability for Lundquist numbers less than approximately $S sim 10^3$. Secondly, increasing the background plasma density modifies the compressibility of the plasma and can also slow-down or even prevent reconnection, even in completely collisionless regimes, by preventing the current sheet from thinning down to the scale of the ion-skin depth. These results have implications for understanding recent and future experiments, and signatures for these processes for proton-radiography diagnostics of these experiments are discussed.
Recent experiments have observed magnetic reconnection in high-energy-density, laser-produced plasma bubbles, with reconnection rates observed to be much higher than can be explained by classical theory. Based on fully kinetic particle simulations we find that fast reconnection in these strongly driven systems can be explained by magnetic flux pile-up at the shoulder of the current sheet and subsequent fast reconnection via two-fluid, collisionless mechanisms. In the strong drive regime with two-fluid effects, we find that the ultimate reconnection time is insensitive to the nominal system Alfven time.
Laser-driven collisonless electrostatic shock formation and the subsequent ion acceleration have been studied in near critical density plasmas. Particle-in-cell simulations show that both the speed of laser-driven collisionless electrostatic shock and the energies of shock-accelerated ions can be greatly enhanced due to fast laser propagation in near critical density plasmas. However, a response time longer than tens of laser wave cycles is required before the shock formation in a near critical density plasma, in contrast to the quick shock formation in a highly overdense target. More important, we find that some ions can be reflected by the collisionless shock even if the electrostatic potential jump across the shock is smaller than the ion kinetic energy in the shock frame, which seems against the conventional ion-reflection condition. These anomalous ion reflections are attributed to the strongly time-oscillating electric field accompanying laser-driven collisionless shock in a near critical density plasma.
Biermann battery magnetic field generation driven by high power laser-solid interactions is explored in experiments performed with the OMEGA EP laser system. Proton deflectometry captures changes to the strength, spatial profile, and temporal dynamics of the self-generated magnetic fields as the target material or laser intensity is varied. Measurements of the magnetic flux during the interaction are used to help validate extended magnetohydrodynamic (MHD) simulations. Results suggest that kinetic effects cause suppression of the Biermann battery mechanism in laser-plasma interactions relevant to both direct and indirect-drive inertial confinement fusion. Experiments also find that more magnetic flux is generated as the target atomic number is increased, which is counter to a standard MHD understanding.
With the advent of high power lasers, new opportunities have opened up for simulating astrophysical processes in the laboratory. We show that 2nd-order Fermi acceleration can be directly investigated at the National Ignition Facility, Livermore. This requires measuring the momentum-space diffusion of 3 MeV protons produced within a turbulent plasma generated by a laser. Treating Fermi acceleration as a biased diffusion process, we show analytically that a measurable broadening of the initial proton distribution is then expected for particles exiting the plasma.