No Arabic abstract
This paper reports a comprehensive study on the applicability of ultra-scaled ferroelectric FinFETs with 6 nm thick hafnium zirconium oxide layer for neuromorphic computing in the presence of process variation, flicker noise, and device aging. An intricate study has been conducted about the impact of such variations on the inference accuracy of pre-trained neural networks consisting of analog, quaternary (2-bit/cell) and binary synapse. A pre-trained neural network with 97.5% inference accuracy on the MNIST dataset has been adopted as the baseline. Process variation, flicker noise, and device aging characterization have been performed and a statistical model has been developed to capture all these effects during neural network simulation. Extrapolated retention above 10 years have been achieved for binary read-out procedure. We have demonstrated that the impact of (1) retention degradation due to the oxide thickness scaling, (2) process variation, and (3) flicker noise can be abated in ferroelectric FinFET based binary neural networks, which exhibits superior performance over quaternary and analog neural network, amidst all variations. The performance of a neural network is the result of coalesced performance of device, architecture and algorithm. This research corroborates the applicability of deeply scaled ferroelectric FinFETs for non-von Neumann computing with proper combination of architecture and algorithm.
Brain-inspired neuromorphic computing which consist neurons and synapses, with an ability to perform complex information processing has unfolded a new paradigm of computing to overcome the von Neumann bottleneck. Electronic synaptic memristor devices which can compete with the biological synapses are indeed significant for neuromorphic computing. In this work, we demonstrate our efforts to develop and realize the graphene oxide (GO) based memristor device as a synaptic device, which mimic as a biological synapse. Indeed, this device exhibits the essential synaptic learning behavior including analog memory characteristics, potentiation and depression. Furthermore, spike-timing-dependent-plasticity learning rule is mimicked by engineering the pre- and post-synaptic spikes. In addition, non-volatile properties such as endurance, retentivity, multilevel switching of the device are explored. These results suggest that Ag/GO/FTO memristor device would indeed be a potential candidate for future neuromorphic computing applications. Keywords: RRAM, Graphene oxide, neuromorphic computing, synaptic device, potentiation, depression
Neurons in the brain behave as non-linear oscillators, which develop rhythmic activity and interact to process information. Taking inspiration from this behavior to realize high density, low power neuromorphic computing will require huge numbers of nanoscale non-linear oscillators. Indeed, a simple estimation indicates that, in order to fit a hundred million oscillators organized in a two-dimensional array inside a chip the size of a thumb, their lateral dimensions must be smaller than one micrometer. However, despite multiple theoretical proposals, there is no proof of concept today of neuromorphic computing with nano-oscillators. Indeed, nanoscale devices tend to be noisy and to lack the stability required to process data in a reliable way. Here, we show experimentally that a nanoscale spintronic oscillator can achieve spoken digit recognition with accuracies similar to state of the art neural networks. We pinpoint the regime of magnetization dynamics leading to highest performance. These results, combined with the exceptional ability of these spintronic oscillators to interact together, their long lifetime, and low energy consumption, open the path to fast, parallel, on-chip computation based on networks of oscillators.
Neuromorphic computing takes inspiration from the brain to create energy efficient hardware for information processing, capable of highly sophisticated tasks. In this article, we make the case that building this new hardware necessitates reinventing electronics. We show that research in physics and material science will be key to create artificial nano-neurons and synapses, to connect them together in huge numbers, to organize them in complex systems, and to compute with them efficiently. We describe how some researchers choose to take inspiration from artificial intelligence to move forward in this direction, whereas others prefer taking inspiration from neuroscience, and we highlight recent striking results obtained with these two approaches. Finally, we discuss the challenges and perspectives in neuromorphic physics, which include developing the algorithms and the hardware hand in hand, making significant advances with small toy systems, as well as building large scale networks.
Neuromorphic computing, inspired by the brain, promises extreme efficiency for certain classes of learning tasks, such as classification and pattern recognition. The performance and power consumption of neuromorphic computing depends heavily on the choice of the neuron architecture. Digital neurons (Dig-N) are conventionally known to be accurate and efficient at high speed, while suffering from high leakage currents from a large number of transistors in a large design. On the other hand, analog/mixed-signal neurons are prone to noise, variability and mismatch, but can lead to extremely low-power designs. In this work, we will analyze, compare and contrast existing neuron architectures with a proposed mixed-signal neuron (MS-N) in terms of performance, power and noise, thereby demonstrating the applicability of the proposed mixed-signal neuron for achieving extreme energy-efficiency in neuromorphic computing. The proposed MS-N is implemented in 65 nm CMOS technology and exhibits > 100X better energy-efficiency across all frequencies over two traditional digital neurons synthesized in the same technology node. We also demonstrate that the inherent error-resiliency of a fully connected or even convolutional neural network (CNN) can handle the noise as well as the manufacturing non-idealities of the MS-N up to certain degrees. Notably, a system-level implementation on MNIST datasets exhibits a worst-case increase in classification error by 2.1% when the integrated noise power in the bandwidth is ~ 0.1 uV2, along with +-3{sigma} amount of variation and mismatch introduced in the transistor parameters for the proposed neuron with 8-bit precision.
Modern computation based on the von Neumann architecture is today a mature cutting-edge science. In this architecture, processing and memory units are implemented as separate blocks interchanging data intensively and continuously. This data transfer is responsible for a large part of the power consumption. The next generation computer technology is expected to solve problems at the exascale. Even though these future computers will be incredibly powerful, if they are based on von Neumann type architectures, they will consume between 20 and 30 megawatts of power and will not have intrinsic physically built-in capabilities to learn or deal with complex and unstructured data as our brain does. Neuromorphic computing systems are aimed at addressing these needs. The human brain performs about 10^15 calculations per second using 20W and a 1.2L volume. By taking inspiration from biology, new generation computers could have much lower power consumption than conventional processors, could exploit integrated non-volatile memory and logic, and could be explicitly designed to support dynamic learning in the context of complex and unstructured data. Among their potential future applications, business, health care, social security, disease and viruses spreading control might be the most impactful at societal level. This roadmap envisages the potential applications of neuromorphic materials in cutting edge technologies and focuses on the design and fabrication of artificial neural systems. The contents of this roadmap will highlight the interdisciplinary nature of this activity which takes inspiration from biology, physics, mathematics, computer science and engineering. This will provide a roadmap to explore and consolidate new technology behind both present and future applications in many technologically relevant areas.