Do you want to publish a course? Click here

Neuromorphic computing with nanoscale spintronic oscillators

146   0   0.0 ( 0 )
 Added by Julie Grollier
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Neurons in the brain behave as non-linear oscillators, which develop rhythmic activity and interact to process information. Taking inspiration from this behavior to realize high density, low power neuromorphic computing will require huge numbers of nanoscale non-linear oscillators. Indeed, a simple estimation indicates that, in order to fit a hundred million oscillators organized in a two-dimensional array inside a chip the size of a thumb, their lateral dimensions must be smaller than one micrometer. However, despite multiple theoretical proposals, there is no proof of concept today of neuromorphic computing with nano-oscillators. Indeed, nanoscale devices tend to be noisy and to lack the stability required to process data in a reliable way. Here, we show experimentally that a nanoscale spintronic oscillator can achieve spoken digit recognition with accuracies similar to state of the art neural networks. We pinpoint the regime of magnetization dynamics leading to highest performance. These results, combined with the exceptional ability of these spintronic oscillators to interact together, their long lifetime, and low energy consumption, open the path to fast, parallel, on-chip computation based on networks of oscillators.



rate research

Read More

Conventional neuro-computing architectures and artificial neural networks have often been developed with no or loose connections to neuroscience. As a consequence, they have largely ignored key features of biological neural processing systems, such as their extremely low-power consumption features or their ability to carry out robust and efficient computation using massively parallel arrays of limited precision, highly variable, and unreliable components. Recent developments in nano-technologies are making available extremely compact and low-power, but also variable and unreliable solid-state devices that can potentially extend the offerings of availing CMOS technologies. In particular, memristors are regarded as a promising solution for modeling key features of biological synapses due to their nanoscale dimensions, their capacity to store multiple bits of information per element and the low energy required to write distinct states. In this paper, we first review the neuro- and neuromorphic-computing approaches that can best exploit the properties of memristor and-scale devices, and then propose a novel hybrid memristor-CMOS neuromorphic circuit which represents a radical departure from conventional neuro-computing approaches, as it uses memristors to directly emulate the biophysics and temporal dynamics of real synapses. We point out the differences between the use of memristors in conventional neuro-computing architectures and the hybrid memristor-CMOS circuit proposed, and argue how this circuit represents an ideal building block for implementing brain-inspired probabilistic computing paradigms that are robust to variability and fault-tolerant by design.
Neuromorphic computing takes inspiration from the brain to create energy efficient hardware for information processing, capable of highly sophisticated tasks. In this article, we make the case that building this new hardware necessitates reinventing electronics. We show that research in physics and material science will be key to create artificial nano-neurons and synapses, to connect them together in huge numbers, to organize them in complex systems, and to compute with them efficiently. We describe how some researchers choose to take inspiration from artificial intelligence to move forward in this direction, whereas others prefer taking inspiration from neuroscience, and we highlight recent striking results obtained with these two approaches. Finally, we discuss the challenges and perspectives in neuromorphic physics, which include developing the algorithms and the hardware hand in hand, making significant advances with small toy systems, as well as building large scale networks.
99 - Renate Krause 2021
Neural coupled oscillators are a useful building block in numerous models and applications. They were analyzed extensively in theoretical studies and more recently, in biologically realistic simulations of spiking neural networks. The advent of mixed-signal analog/digital neuromorphic electronic circuits provides new means for implementing neural coupled oscillators on compact low-power spiking neural network hardware platforms. However, their implementation on this noisy, low-precision and inhomogeneous computing substrate raises new challenges with regards to stability and controllability. In this work, we present a robust, spiking neural network model of neural coupled oscillators and validate it with an implementation on a mixed-signal neuromorphic processor. We demonstrate its robustness showing how to reliably control and modulate the oscillators frequency and phase shift, despite the variability of the silicon synapse and neuron properties. We show how this ultra-low power neural processing system can be used to build an adaptive cardiac pacemaker modulating the heart rate with respect to the respiration phases and compare it with surface ECG and respiratory signal recordings of dogs at rest. The implementation of our model in neuromorphic electronic hardware shows its robustness on a highly variable substrate and extends the toolbox for applications requiring rhythmic outputs such as pacemakers.
Machine learning software applications are nowadays ubiquitous in many fields of science and society for their outstanding capability of solving computationally vast problems like the recognition of patterns and regularities in big datasets. One of the main goals of research is the realization of a physical neural network able to perform data processing in a much faster and energy-efficient way than the state-of-the-art technology. Here we show that lattices of exciton-polariton condensates accomplish neuromorphic computing using fast optical nonlinearities and with lower error rate than any previous hardware implementation. We demonstrate that our neural network significantly increases the recognition efficiency compared to the linear classification algorithms on one of the most widely used benchmarks, the MNIST problem, showing a concrete advantage from the integration of optical systems in reservoir computing architectures.
Neuromorphic computing describes the use of VLSI systems to mimic neuro-biological architectures and is also looked at as a promising alternative to the traditional von Neumann architecture. Any new computing architecture would need a system that can perform floating-point arithmetic. In this paper, we describe a neuromorphic system that performs IEEE 754-compliant floating-point multiplication. The complex process of multiplication is divided into smaller sub-tasks performed by components Exponent Adder, Bias Subtractor, Mantissa Multiplier and Sign OF/UF. We study the effect of the number of neurons per bit on accuracy and bit error rate, and estimate the optimal number of neurons needed for each component.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا