Do you want to publish a course? Click here

Two-sequential Conclusive Discrimination between Binary Coherent States via Indirect Measurements

310   0   0.0 ( 0 )
 Added by Min Namkung
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

A general scenario for an $N$-sequential conclusive state discrimination introduced recently in Loubenets and Namkung [arXiv:2102.04747] can provide a multipartite quantum communication realizable in the presence of a noise. In the present article, we propose a new experimental scheme for the implementation of a sequential conclusive discrimination between binary coherent states via indirect measurements within the Jaynes-Cummings interaction model. We find that if the mean photon number is less than 1.6, then, for our two-sequential state discrimination scheme, the optimal success probability is larger than the one presented in Fields, Varga, and Bergou [2020, IEEE Int. Conf. Quant. Eng. Comp.]. We also show that, if the mean photon number is almost equal to 1.2, then the optimal success probability nearly approaches the Helstrom bound.



rate research

Read More

In the present article, we develop a general framework for the description of an $N$-sequential state discrimination, where each of $N$ receivers always obtains a conclusive result. For this new state discrimination scenario, we derive two mutually equivalent general representations of the success probability and prove that if one of two states, pure or mixed, is prepared by a sender, then the optimal success probability is given by the Helstrom bound for any number $N$ of sequential receivers. Furthermore, we specify receivers indirect measurements resulting in the optimal $N$-sequential conclusive state discrimination protocol. The developed framework is true for any number $N$ of sequential receivers, any number of arbitrary quantum states, pure or mixed, to be discriminated, and all types of receivers quantum measurements. The new general results derived within the developed framework are important both from the theoretical point of view and for a successful multipartite quantum communication even in the presence of a quantum noise.
Coherent states of the quantum electromagnetic field, the quantum description of ideal laser light, are a prime candidate as information carriers for optical communications. A large body of literature exists on quantum-limited parameter estimation and discrimination for coherent states. However, very little is known about practical realizations of receivers for unambiguous state discrimination (USD) of coherent states. Here we fill this gap and establish a theory of unambiguous discrimination of coherent states, with receivers that are allowed to employ: passive multimode linear optics, phase-space displacements, un-excited auxiliary input modes, and on-off photon detection. Our results indicate that these currently-available optical components are near optimal for unambiguous discrimination of multiple coherent states in a constellation.
We demonstrate a sequence of two quantum teleportations of optical coherent states, combining two high-fidelity teleporters for continuous variables. In our experiment, the individual teleportation fidelities are evaluated as F_1 = 0.70 pm 0.02 and F_2 = 0.75 pm 0.02, while the fidelity between the input and the sequentially teleported states is determined as F^{(2)} = 0.57 pm 0.02. This still exceeds the optimal fidelity of one half for classical teleportation of arbitrary coherent states and almost attains the value of the first (unsequential) quantum teleportation experiment with optical coherent states.
The optimal discrimination of non-orthogonal quantum states with minimum error probability is a fundamental task in quantum measurement theory as well as an important primitive in optical communication. In this work, we propose and experimentally realize a new and simple quantum measurement strategy capable of discriminating two coherent states with smaller error probabilities than can be obtained using the standard measurement devices; the Kennedy receiver and the homodyne receiver.
241 - Renzhi Yuan , Julian Cheng 2020
The quantum discrimination of two non-coherent states draws much attention recently. In this letter, we first consider the quantum discrimination of two noiseless displaced number states. Then we derive the Fock representation of noisy displaced number states and address the problem of discriminating between two noisy displaced number states. We further prove that the optimal quantum discrimination of two noisy displaced number states can be achieved by the Kennedy receiver with threshold detection. Simulation results verify the theoretical derivations and show that the error probability of on-off keying modulation using a displaced number state is significantly less than that of on-off keying modulation using a coherent state with the same average energy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا