Do you want to publish a course? Click here

Ultrathin 2D-oxides: a perspective on fabrication, structure, defect, transport, electron and phonon properties

102   0   0.0 ( 0 )
 Added by Walter Lambrecht
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the field of atomically thin 2D materials, oxides are relatively unexplored in spite of the large number of layered oxide structures amenable to exfoliation. There is an increasing interest in ultra-thin film oxide nanostructures from applied points of view. In this perspective paper, recent progress in understanding the fundamental properties of 2D oxides is discussed. Two families of 2D oxides are considered: (1) van der Waals bonded layered materials in which the transition metal is in its highest valence state (represented by V$_2$O$_5$ and MoO$_3$) and (2) layered materials with ionic bonding between positive alkali cation layers and negatively charged transition metal oxide layers (LiCoO$_2$). The chemical exfoliation process and its combinaton with mechanical exfoliation are presented for the latter. Structural phase stability of the resulting nanoflakes, the role of cation size and the importance of defects in oxides are discussed. Effects of two-dimensionality on phonons, electronic band structures and electronic screening are placed in the context of what is known on other 2D materials, such as transition metal dichalcogenides. Electronic structure is discussed at the level of many-body-perturbation theory using the quasiparticle self-consistent $GW$ method, the accuracy of which is critically evaluated including effects of electron-hole interactions on screening and electron-phonon coupling. The predicted occurence of a two-dimensional electron gas on Li covered surfaces of LiCoO$_2$ and its relation to topological aspects of the band structure and bonding is presented as an example of the essential role of the surface in ultrathin materials. Finally, some case studies of the electronic transport and the use of these oxides in nanoscale field effect transistors are presented.



rate research

Read More

Thermoelectric properties of graphene nanoribbons with periodic edge vacancies and antidot lattice are investigated. The electron-phonon interaction is taken into account in the framework of the Hubbard-Holstein model with the use of the Lang-Firsov unitary transformation scheme. The electron transmission function, the thermopower and the thermoelectric figure of merit are calculated. We have found that the electron-phonon interaction causes a decrease in the peak values of the thermoelectric figure of merit and the shift of the peak positions closer to the center of the bandgap. The effects are more pronounced for the secondary peaks that appear in the structures with periodic antidot.
Rare-earth-doped optical materials are important for light sources in optoelectronics, as well as for efficient optical amplification elements and other elements of photonics. On the basis of the previously developed method of anhydrous, low-temperature synthesis of Er/Yb oxides from their chlorides we fabricated proper nanoparticles with defined parameters and used them for the development of optically transparent, luminescent polymer nanocomposite with low optical scattering, suitable for direct, light-induced formation of photonic elements. Introduction of preformed gold nanoparticles in such a nanocomposite was also performed and an enhancement of luminescence due to the influence of plasmon effects was detected.
Ultrashort light pulses can selectively excite charges, spins and phonons in materials, providing a powerful approach for manipulating their properties. Here we use femtosecond laser pulses to coherently manipulate the electron and phonon distributions, and their couplings, in the charge density wave (CDW) material 1T-TaSe$_2$. After exciting the material with a short light pulse, spatial smearing of the electrons launches a coherent lattice breathing mode, which in turn modulates the electron temperature. This indicates a bi-directional energy exchange between the electrons and the strongly-coupled phonons. By tuning the laser excitation fluence, we can control the magnitude of the electron temperature modulation, from ~ 200 K in the case of weak excitation, to ~ 1000 K for strong laser excitation. This is accompanied by a switching of the dominant mechanism from anharmonic phonon-phonon coupling to coherent electron-phonon coupling, as manifested by a phase change of $pi$ in the electron temperature modulation. Our approach thus opens up possibilities for coherently manipulating the interactions and properties of quasi-2D and other quantum materials using light.
We calculate the electron-phonon scattering and binding in semiconducting carbon nanotubes, within a tight binding model. The mobility is derived using a multi-band Boltzmann treatment. At high fields, the dominant scattering is inter-band scattering by LO phonons corresponding to the corners K of the graphene Brillouin zone. The drift velocity saturates at approximately half the graphene Fermi velocity. The calculated mobility as a function of temperature, electric field, and nanotube chirality are well reproduced by a simple interpolation formula. Polaronic binding give a band-gap renormalization of ~70 meV, an order of magnitude larger than expected. Coherence lengths can be quite long but are strongly energy dependent.
We show that hole states in recently discovered single-layer InSe are strongly renormalized by the coupling with acoustic phonons. The coupling is enhanced significantly at moderate hole doping ($sim$10$^{13}$ cm$^{-2}$) due to hexagonal warping of the Fermi surface. While the system remains dynamically stable, its electron-phonon spectral function exhibits sharp low-energy resonances, leading to the formation of satellite quasiparticle states near the Fermi energy. Such many-body renormalization is predicted to have two important consequences. First, it significantly suppresses charge carrier mobility reaching $sim$1 cm$^2$V$^{-1}$s$^{-1}$ at $100$ K in a freestanding sample. Second, it gives rise to unusual temperature-dependent optical excitations in the midinfrared region. Relatively small charge carrier concentrations and realistic temperatures suggest that these excitations may be observed experimentally.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا