Do you want to publish a course? Click here

Electron-phonon effects and transport in carbon nanotubes

76   0   0.0 ( 0 )
 Added by Vasili Perebeinos
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We calculate the electron-phonon scattering and binding in semiconducting carbon nanotubes, within a tight binding model. The mobility is derived using a multi-band Boltzmann treatment. At high fields, the dominant scattering is inter-band scattering by LO phonons corresponding to the corners K of the graphene Brillouin zone. The drift velocity saturates at approximately half the graphene Fermi velocity. The calculated mobility as a function of temperature, electric field, and nanotube chirality are well reproduced by a simple interpolation formula. Polaronic binding give a band-gap renormalization of ~70 meV, an order of magnitude larger than expected. Coherence lengths can be quite long but are strongly energy dependent.



rate research

Read More

Charge and thermal conductivities are the most important parameters of carbon nanomaterials as candidates for future electronics. In this paper we address the effects of Anderson type disorder in long semiconductor carbon nanotubes (CNTs) to electron charge conductivity and lattice thermal conductivity using the atomistic Green function approach. The electron and phonon transmissions are analyzed as a function of the length of the disordered nanostructures. The thermal conductance as a function of temperature is calculated for different lengths. Analysis of the transmission probabilities as a function of length of the disordered device shows that both electrons and phonons with different energies display different transport regimes, i.e. quasi-ballistic, diffusive and localization regimes coexist. In the light of the results we discuss heating of the semiconductor device in electronic applications.
We perform ab initio calculations of charged graphene and single-wall carbon nanotubes (CNTs). A wealth of electromechanical behaviors is obtained: (1) Both nanotubes and graphene expand upon electron injection. (2) Upon hole injection, metallic nanotubes and graphene display a non-monotonic behavior: Upon increasing hole densities, the lattice constant initially contracts, reaches a minimum, and then starts to expand. The hole densities at minimum lattice constants are 0.3 |e|/atom for graphene and between 0.1 and 0.3 |e|/atom for the metallic nanotubes studied. (3)Semiconducting CNTs with small diameters (d <~ 20 A) always expand upon hole injection; (4) Semiconducting CNTs with large diameters (d >~ 20 A) display a behavior intermediate between those of metallic and large-gap CNTs. (5) The strain versus extra charge displays a linear plus power-law behavior, with characteristic exponents for graphene, metallic, and semiconducting CNTs. All these features are physically understood within a simple tight-binding total-energy model.
We report the existence of broad and weakly asymmetric features in the high-energy (G) Raman modes of freely suspended metallic carbon nanotubes of defined chiral index. A significant variation in peak width (from 12 cm-1 to 110 cm-1) is observed as a function of the nanotubes chiral structure. When the nanotubes are electrostatically gated, the peak widths decrease. The broadness of the Raman features is understood as the consequence of coupling of the phonon to electron-hole pairs, the strength of which varies with the nanotube chiral index and the position of the Fermi energy.
153 - M. Salvato , M. Cirillo , M. Lucci 2008
We investigate experimentally the transport properties of single-walled carbon nanotube bundles as a function of temperature and applied current over broad intervals of these variables. The analysis is performed on arrays of nanotube bundles whose axes are aligned along the direction of the externally supplied bias current. The data are found consistent with a charge transport model governed by the tunnelling between metallic regions occurring through potential barriers generated by nanotubes contact areas or bundles surfaces. Based on this model and on experimental data we describe quantitatively the dependencies of the amplitude of these barriers upon bias current and temperature.
We present measurements of the $D$ Raman mode in graphene and carbon nanotubes at different laser excitation energies. The Raman mode around 1050 - 1150,cm$^{-1}$ originates from a double-resonant scattering process of longitudinal acoustic (LA) phonons with defects. We investigate its dependence on laser excitation energy, on the number of graphene layers and on the carbon nanotube diameter. We assign this Raman mode to so-called inner processes with resonant phonons mainly from the $Gamma-K$ high-symmetry direction. The asymmetry of the $D$ mode is explained by additional contributions from phonons next to the $Gamma-K$ line. Our results demonstrate the importance of inner contributions in the double-resonance scattering process and add a fast method to investigate acoustic phonons in graphene and carbon nanotubes by optical spectroscopy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا