Do you want to publish a course? Click here

DeepHate: Hate Speech Detection via Multi-Faceted Text Representations

81   0   0.0 ( 0 )
 Added by Roy Ka-Wei Lee
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Online hate speech is an important issue that breaks the cohesiveness of online social communities and even raises public safety concerns in our societies. Motivated by this rising issue, researchers have developed many traditional machine learning and deep learning methods to detect hate speech in online social platforms automatically. However, most of these methods have only considered single type textual feature, e.g., term frequency, or using word embeddings. Such approaches neglect the other rich textual information that could be utilized to improve hate speech detection. In this paper, we propose DeepHate, a novel deep learning model that combines multi-faceted text representations such as word embeddings, sentiments, and topical information, to detect hate speech in online social platforms. We conduct extensive experiments and evaluate DeepHate on three large publicly available real-world datasets. Our experiment results show that DeepHate outperforms the state-of-the-art baselines on the hate speech detection task. We also perform case studies to provide insights into the salient features that best aid in detecting hate speech in online social platforms.



rate research

Read More

With growing role of social media in shaping public opinions and beliefs across the world, there has been an increased attention to identify and counter the problem of hate speech on social media. Hate speech on online spaces has serious manifestations, including social polarization and hate crimes. While prior works have proposed automated techniques to detect hate speech online, these techniques primarily fail to look beyond the textual content. Moreover, few attempts have been made to focus on the aspects of interpretability of such models given the social and legal implications of incorrect predictions. In this work, we propose a deep neural multi-modal model that can: (a) detect hate speech by effectively capturing the semantics of the text along with socio-cultural context in which a particular hate expression is made, and (b) provide interpretable insights into decisions of our model. By performing a thorough evaluation of different modeling techniques, we demonstrate that our model is able to outperform the existing state-of-the-art hate speech classification approaches. Finally, we show the importance of social and cultural context features towards unearthing clusters associated with different categories of hate.
Hate speech has grown significantly on social media, causing serious consequences for victims of all demographics. Despite much attention being paid to characterize and detect discriminatory speech, most work has focused on explicit or overt hate speech, failing to address a more pervasive form based on coded or indirect language. To fill this gap, this work introduces a theoretically-justified taxonomy of implicit hate speech and a benchmark corpus with fine-grained labels for each message and its implication. We present systematic analyses of our dataset using contemporary baselines to detect and explain implicit hate speech, and we discuss key features that challenge existing models. This dataset will continue to serve as a useful benchmark for understanding this multifaceted issue.
In current hate speech datasets, there exists a high correlation between annotators perceptions of toxicity and signals of African American English (AAE). This bias in annotated training data and the tendency of machine learning models to amplify it cause AAE text to often be mislabeled as abusive/offensive/hate speech with a high false positive rate by current hate speech classifiers. In this paper, we use adversarial training to mitigate this bias, introducing a hate speech classifier that learns to detect toxic sentences while demoting confounds corresponding to AAE texts. Experimental results on a hate speech dataset and an AAE dataset suggest that our method is able to substantially reduce the false positive rate for AAE text while only minimally affecting the performance of hate speech classification.
With increasing popularity of social media platforms hate speech is emerging as a major concern, where it expresses abusive speech that targets specific group characteristics, such as gender, religion or ethnicity to spread violence. Earlier people use to verbally deliver hate speeches but now with the expansion of technology, some people are deliberately using social media platforms to spread hate by posting, sharing, commenting, etc. Whether it is Christchurch mosque shootings or hate crimes against Asians in west, it has been observed that the convicts are very much influenced from hate text present online. Even though AI systems are in place to flag such text but one of the key challenges is to reduce the false positive rate (marking non hate as hate), so that these systems can detect hate speech without undermining the freedom of expression. In this paper, we use ETHOS hate speech detection dataset and analyze the performance of hate speech detection classifier by replacing or integrating the word embeddings (fastText (FT), GloVe (GV) or FT + GV) with static BERT embeddings (BE). With the extensive experimental trails it is observed that the neural network performed better with static BE compared to using FT, GV or FT + GV as word embeddings. In comparison to fine-tuned BERT, one metric that significantly improved is specificity.
In recent years, Hate Speech Detection has become one of the interesting fields in natural language processing or computational linguistics. In this paper, we present the description of our system to solve this problem at the VLSP shared task 2019: Hate Speech Detection on Social Networks with the corpus which contains 20,345 human-labeled comments/posts for training and 5,086 for public-testing. We implement a deep learning method based on the Bi-GRU-LSTM-CNN classifier into this task. Our result in this task is 70.576% of F1-score, ranking the 5th of performance on public-test set.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا