No Arabic abstract
With growing role of social media in shaping public opinions and beliefs across the world, there has been an increased attention to identify and counter the problem of hate speech on social media. Hate speech on online spaces has serious manifestations, including social polarization and hate crimes. While prior works have proposed automated techniques to detect hate speech online, these techniques primarily fail to look beyond the textual content. Moreover, few attempts have been made to focus on the aspects of interpretability of such models given the social and legal implications of incorrect predictions. In this work, we propose a deep neural multi-modal model that can: (a) detect hate speech by effectively capturing the semantics of the text along with socio-cultural context in which a particular hate expression is made, and (b) provide interpretable insights into decisions of our model. By performing a thorough evaluation of different modeling techniques, we demonstrate that our model is able to outperform the existing state-of-the-art hate speech classification approaches. Finally, we show the importance of social and cultural context features towards unearthing clusters associated with different categories of hate.
In the past few years, there has been a surge of interest in multi-modal problems, from image captioning to visual question answering and beyond. In this paper, we focus on hate speech detection in multi-modal memes wherein memes pose an interesting multi-modal fusion problem. We aim to solve the Facebook Meme Challenge cite{kiela2020hateful} which aims to solve a binary classification problem of predicting whether a meme is hateful or not. A crucial characteristic of the challenge is that it includes benign confounders to counter the possibility of models exploiting unimodal priors. The challenge states that the state-of-the-art models perform poorly compared to humans. During the analysis of the dataset, we realized that majority of the data points which are originally hateful are turned into benign just be describing the image of the meme. Also, majority of the multi-modal baselines give more preference to the hate speech (language modality). To tackle these problems, we explore the visual modality using object detection and image captioning models to fetch the actual caption and then combine it with the multi-modal representation to perform binary classification. This approach tackles the benign text confounders present in the dataset to improve the performance. Another approach we experiment with is to improve the prediction with sentiment analysis. Instead of only using multi-modal representations obtained from pre-trained neural networks, we also include the unimodal sentiment to enrich the features. We perform a detailed analysis of the above two approaches, providing compelling reasons in favor of the methodologies used.
Online hate speech is an important issue that breaks the cohesiveness of online social communities and even raises public safety concerns in our societies. Motivated by this rising issue, researchers have developed many traditional machine learning and deep learning methods to detect hate speech in online social platforms automatically. However, most of these methods have only considered single type textual feature, e.g., term frequency, or using word embeddings. Such approaches neglect the other rich textual information that could be utilized to improve hate speech detection. In this paper, we propose DeepHate, a novel deep learning model that combines multi-faceted text representations such as word embeddings, sentiments, and topical information, to detect hate speech in online social platforms. We conduct extensive experiments and evaluate DeepHate on three large publicly available real-world datasets. Our experiment results show that DeepHate outperforms the state-of-the-art baselines on the hate speech detection task. We also perform case studies to provide insights into the salient features that best aid in detecting hate speech in online social platforms.
The exponential growths of social media and micro-blogging sites not only provide platforms for empowering freedom of expressions and individual voices, but also enables people to express anti-social behaviour like online harassment, cyberbullying, and hate speech. Numerous works have been proposed to utilize textual data for social and anti-social behaviour analysis, by predicting the contexts mostly for highly-resourced languages like English. However, some languages are under-resourced, e.g., South Asian languages like Bengali, that lack computational resources for accurate natural language processing (NLP). In this paper, we propose an explainable approach for hate speech detection from the under-resourced Bengali language, which we called DeepHateExplainer. Bengali texts are first comprehensively preprocessed, before classifying them into political, personal, geopolitical, and religious hates using a neural ensemble method of transformer-based neural architectures (i.e., monolingual Bangla BERT-base, multilingual BERT-cased/uncased, and XLM-RoBERTa). Important(most and least) terms are then identified using sensitivity analysis and layer-wise relevance propagation(LRP), before providing human-interpretable explanations. Finally, we compute comprehensiveness and sufficiency scores to measure the quality of explanations w.r.t faithfulness. Evaluations against machine learning~(linear and tree-based models) and neural networks (i.e., CNN, Bi-LSTM, and Conv-LSTM with word embeddings) baselines yield F1-scores of 78%, 91%, 89%, and 84%, for political, personal, geopolitical, and religious hates, respectively, outperforming both ML and DNN baselines.
In current hate speech datasets, there exists a high correlation between annotators perceptions of toxicity and signals of African American English (AAE). This bias in annotated training data and the tendency of machine learning models to amplify it cause AAE text to often be mislabeled as abusive/offensive/hate speech with a high false positive rate by current hate speech classifiers. In this paper, we use adversarial training to mitigate this bias, introducing a hate speech classifier that learns to detect toxic sentences while demoting confounds corresponding to AAE texts. Experimental results on a hate speech dataset and an AAE dataset suggest that our method is able to substantially reduce the false positive rate for AAE text while only minimally affecting the performance of hate speech classification.
With increasing popularity of social media platforms hate speech is emerging as a major concern, where it expresses abusive speech that targets specific group characteristics, such as gender, religion or ethnicity to spread violence. Earlier people use to verbally deliver hate speeches but now with the expansion of technology, some people are deliberately using social media platforms to spread hate by posting, sharing, commenting, etc. Whether it is Christchurch mosque shootings or hate crimes against Asians in west, it has been observed that the convicts are very much influenced from hate text present online. Even though AI systems are in place to flag such text but one of the key challenges is to reduce the false positive rate (marking non hate as hate), so that these systems can detect hate speech without undermining the freedom of expression. In this paper, we use ETHOS hate speech detection dataset and analyze the performance of hate speech detection classifier by replacing or integrating the word embeddings (fastText (FT), GloVe (GV) or FT + GV) with static BERT embeddings (BE). With the extensive experimental trails it is observed that the neural network performed better with static BE compared to using FT, GV or FT + GV as word embeddings. In comparison to fine-tuned BERT, one metric that significantly improved is specificity.