Do you want to publish a course? Click here

Accurate Anchor Free Tracking

113   0   0.0 ( 0 )
 Added by Shengyun Peng
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Visual object tracking is an important application of computer vision. Recently, Siamese based trackers have achieved good accuracy. However, most of Siamese based trackers are not efficient, as they exhaustively search potential object locations to define anchors and then classify each anchor (i.e., a bounding box). This paper develops the first Anchor Free Siamese Network (AFSN). Specifically, a target object is defined by a bounding box center, tracking offset, and object size. All three are regressed by Siamese network with no additional classification or regional proposal, and performed once for each frame. We also tune the stride and receptive field for Siamese network, and further perform ablation experiments to quantitatively illustrate the effectiveness of our AFSN. We evaluate AFSN using five most commonly used benchmarks and compare to the best anchor-based trackers with source codes available for each benchmark. AFSN is 3-425 times faster than these best anchor based trackers. AFSN is also 5.97% to 12.4% more accurate in terms of all metrics for benchmark sets OTB2015, VOT2015, VOT2016, VOT2018 and TrackingNet, except that SiamRPN++ is 4% better than AFSN in terms of Expected Average Overlap (EAO) on VOT2018 (but SiamRPN++ is 3.9 times slower).

rate research

Read More

Accurate localization and tracking are a fundamental requirement for robotic applications. Localization systems like GPS, optical tracking, simultaneous localization and mapping (SLAM) are used for daily life activities, research, and commercial applications. Ultra-wideband (UWB) technology provides another venue to accurately locate devices both indoors and outdoors. In this paper, we study a localization solution with a single UWB anchor, instead of the traditional multi-anchor setup. Besides the challenge of a single UWB ranging source, the only other sensor we require is a low-cost 9 DoF inertial measurement unit (IMU). Under such a configuration, we propose continuous monitoring of UWB range changes to estimate the robot speed when moving on a line. Combining speed estimation with orientation estimation from the IMU sensor, the system becomes temporally observable. We use an Extended Kalman Filter (EKF) to estimate the pose of a robot. With our solution, we can effectively correct the accumulated error and maintain accurate tracking of a moving robot.
305 - Yichao Yan , Jinpeng Li , Jie Qin 2021
Person search aims to simultaneously localize and identify a query person from realistic, uncropped images, which can be regarded as the unified task of pedestrian detection and person re-identification (re-id). Most existing works employ two-stage detectors like Faster-RCNN, yielding encouraging accuracy but with high computational overhead. In this work, we present the Feature-Aligned Person Search Network (AlignPS), the first anchor-free framework to efficiently tackle this challenging task. AlignPS explicitly addresses the major challenges, which we summarize as the misalignment issues in different levels (i.e., scale, region, and task), when accommodating an anchor-free detector for this task. More specifically, we propose an aligned feature aggregation module to generate more discriminative and robust feature embeddings by following a re-id first principle. Such a simple design directly improves the baseline anchor-free model on CUHK-SYSU by more than 20% in mAP. Moreover, AlignPS outperforms state-of-the-art two-stage methods, with a higher speed. Code is available at https://github.com/daodaofr/AlignPS
Object detection networks are powerful in computer vision, but not necessarily optimized for biomedical object detection. In this work, we propose CircleNet, a simple anchor-free detection method with circle representation for detection of the ball-shaped glomerulus. Different from the traditional bounding box based detection method, the bounding circle (1) reduces the degrees of freedom of detection representation, (2) is naturally rotation invariant, (3) and optimized for ball-shaped objects. The key innovation to enable this representation is the anchor-free framework with the circle detection head. We evaluate CircleNet in the context of detection of glomerulus. CircleNet increases average precision of the glomerulus detection from 0.598 to 0.647. Another key advantage is that CircleNet achieves better rotation consistency compared with bounding box representations.
94 - Yichao Yan , Jinpeng Li , Jie Qin 2021
Person search aims to simultaneously localize and identify a query person from realistic, uncropped images. To achieve this goal, state-of-the-art models typically add a re-id branch upon two-stage detectors like Faster R-CNN. Owing to the ROI-Align operation, this pipeline yields promising accuracy as re-id features are explicitly aligned with the corresponding object regions, but in the meantime, it introduces high computational overhead due to dense object anchors. In this work, we present an anchor-free approach to efficiently tackling this challenging task, by introducing the following dedicated designs. First, we select an anchor-free detector (i.e., FCOS) as the prototype of our framework. Due to the lack of dense object anchors, it exhibits significantly higher efficiency compared with existing person search models. Second, when directly accommodating this anchor-free detector for person search, there exist several major challenges in learning robust re-id features, which we summarize as the misalignment issues in different levels (i.e., scale, region, and task). To address these issues, we propose an aligned feature aggregation module to generate more discriminative and robust feature embeddings. Accordingly, we name our model as Feature-Aligned Person Search Network (AlignPS). Third, by investigating the advantages of both anchor-based and anchor-free models, we further augment AlignPS with an ROI-Align head, which significantly improves the robustness of re-id features while still keeping our model highly efficient. Extensive experiments conducted on two challenging benchmarks (i.e., CUHK-SYSU and PRW) demonstrate that our framework achieves state-of-the-art or competitive performance, while displaying higher efficiency. All the source codes, data, and trained models are available at: https://github.com/daodaofr/alignps.
In the domain of visual tracking, most deep learning-based trackers highlight the accuracy but casting aside efficiency. Therefore, their real-world deployment on mobile platforms like the unmanned aerial vehicle (UAV) is impeded. In this work, a novel two-stage Siamese network-based method is proposed for aerial tracking, textit{i.e.}, stage-1 for high-quality anchor proposal generation, stage-2 for refining the anchor proposal. Different from anchor-based methods with numerous pre-defined fixed-sized anchors, our no-prior method can 1) increase the robustness and generalization to different objects with various sizes, especially to small, occluded, and fast-moving objects, under complex scenarios in light of the adaptive anchor generation, 2) make calculation feasible due to the substantial decrease of anchor numbers. In addition, compared to anchor-free methods, our framework has better performance owing to refinement at stage-2. Comprehensive experiments on three benchmarks have proven the superior performance of our approach, with a speed of around 200 frames/s.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا