Do you want to publish a course? Click here

PAFNet: An Efficient Anchor-Free Object Detector Guidance

129   0   0.0 ( 0 )
 Added by Guanzhong Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Object detection is a basic but challenging task in computer vision, which plays a key role in a variety of industrial applications. However, object detectors based on deep learning usually require greater storage requirements and longer inference time, which hinders its practicality seriously. Therefore, a trade-off between effectiveness and efficiency is necessary in practical scenarios. Considering that without constraint of pre-defined anchors, anchor-free detectors can achieve acceptable accuracy and inference speed simultaneously. In this paper, we start from an anchor-free detector called TTFNet, modify the structure of TTFNet and introduce multiple existing tricks to realize effective server and mobile solutions respectively. Since all experiments in this paper are conducted based on PaddlePaddle, we call the model as PAFNet(Paddle Anchor Free Network). For server side, PAFNet can achieve a better balance between effectiveness (42.2% mAP) and efficiency (67.15 FPS) on a single V100 GPU. For moblie side, PAFNet-lite can achieve a better accuracy of (23.9% mAP) and 26.00 ms on Kirin 990 ARM CPU, outperforming the existing state-of-the-art anchor-free detectors by significant margins. Source code is at https://github.com/PaddlePaddle/PaddleDetection.



rate research

Read More

Accurate and fast 3D object detection from point clouds is a key task in autonomous driving. Existing one-stage 3D object detection methods can achieve real-time performance, however, they are dominated by anchor-based detectors which are inefficient and require additional post-processing. In this paper, we eliminate anchors and model an object as a single point the center point of its bounding box. Based on the center point, we propose an anchor-free CenterNet3D Network that performs 3D object detection without anchors. Our CenterNet3D uses keypoint estimation to find center points and directly regresses 3D bounding boxes. However, because inherent sparsity of point clouds, 3D object center points are likely to be in empty space which makes it difficult to estimate accurate boundary. To solve this issue, we propose an auxiliary corner attention module to enforce the CNN backbone to pay more attention to object boundaries which is effective to obtain more accurate bounding boxes. Besides, our CenterNet3D is Non-Maximum Suppression free which makes it more efficient and simpler. On the KITTI benchmark, our proposed CenterNet3D achieves competitive performance with other one stage anchor-based methods which show the efficacy of our proposed center point representation.
94 - Yichao Yan , Jinpeng Li , Jie Qin 2021
Person search aims to simultaneously localize and identify a query person from realistic, uncropped images. To achieve this goal, state-of-the-art models typically add a re-id branch upon two-stage detectors like Faster R-CNN. Owing to the ROI-Align operation, this pipeline yields promising accuracy as re-id features are explicitly aligned with the corresponding object regions, but in the meantime, it introduces high computational overhead due to dense object anchors. In this work, we present an anchor-free approach to efficiently tackling this challenging task, by introducing the following dedicated designs. First, we select an anchor-free detector (i.e., FCOS) as the prototype of our framework. Due to the lack of dense object anchors, it exhibits significantly higher efficiency compared with existing person search models. Second, when directly accommodating this anchor-free detector for person search, there exist several major challenges in learning robust re-id features, which we summarize as the misalignment issues in different levels (i.e., scale, region, and task). To address these issues, we propose an aligned feature aggregation module to generate more discriminative and robust feature embeddings. Accordingly, we name our model as Feature-Aligned Person Search Network (AlignPS). Third, by investigating the advantages of both anchor-based and anchor-free models, we further augment AlignPS with an ROI-Align head, which significantly improves the robustness of re-id features while still keeping our model highly efficient. Extensive experiments conducted on two challenging benchmarks (i.e., CUHK-SYSU and PRW) demonstrate that our framework achieves state-of-the-art or competitive performance, while displaying higher efficiency. All the source codes, data, and trained models are available at: https://github.com/daodaofr/alignps.
135 - Ziwei Wang , Ziyi Wu , Jiwen Lu 2020
In this paper, we propose a binarized neural network learning method called BiDet for efficient object detection. Conventional network binarization methods directly quantize the weights and activations in one-stage or two-stage detectors with constrained representational capacity, so that the information redundancy in the networks causes numerous false positives and degrades the performance significantly. On the contrary, our BiDet fully utilizes the representational capacity of the binary neural networks for object detection by redundancy removal, through which the detection precision is enhanced with alleviated false positives. Specifically, we generalize the information bottleneck (IB) principle to object detection, where the amount of information in the high-level feature maps is constrained and the mutual information between the feature maps and object detection is maximized. Meanwhile, we learn sparse object priors so that the posteriors are concentrated on informative detection prediction with false positive elimination. Extensive experiments on the PASCAL VOC and COCO datasets show that our method outperforms the state-of-the-art binary neural networks by a sizable margin.
151 - Quanyu Liao , Xin Wang , Bin Kong 2021
Deep neural networks have been demonstrated to be vulnerable to adversarial attacks: subtle perturbation can completely change prediction result. The vulnerability has led to a surge of research in this direction, including adversarial attacks on object detection networks. However, previous studies are dedicated to attacking anchor-based object detectors. In this paper, we present the first adversarial attack on anchor-free object detectors. It conducts category-wise, instead of previously instance-wise, attacks on object detectors, and leverages high-level semantic information to efficiently generate transferable adversarial examples, which can also be transferred to attack other object detectors, even anchor-based detectors such as Faster R-CNN. Experimental results on two benchmark datasets demonstrate that our proposed method achieves state-of-the-art performance and transferability.
We motivate and present feature selective anchor-free (FSAF) module, a simple and effective building block for single-shot object detectors. It can be plugged into single-shot detectors with feature pyramid structure. The FSAF module addresses two limitations brought up by the conventional anchor-based detection: 1) heuristic-guided feature selection; 2) overlap-based anchor sampling. The general concept of the FSAF module is online feature selection applied to the training of multi-level anchor-free branches. Specifically, an anchor-free branch is attached to each level of the feature pyramid, allowing box encoding and decoding in the anchor-free manner at an arbitrary level. During training, we dynamically assign each instance to the most suitable feature level. At the time of inference, the FSAF module can work jointly with anchor-based branches by outputting predictions in parallel. We instantiate this concept with simple implementations of anchor-free branches and online feature selection strategy. Experimental results on the COCO detection track show that our FSAF module performs better than anchor-based counterparts while being faster. When working jointly with anchor-based branches, the FSAF module robustly improves the baseline RetinaNet by a large margin under various settings, while introducing nearly free inference overhead. And the resulting best model can achieve a state-of-the-art 44.6% mAP, outperforming all existing single-shot detectors on COCO.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا