Do you want to publish a course? Click here

EFT Diagrammatica: UV Roots of the CP-conserving SMEFT

77   0   0.0 ( 0 )
 Added by Suraj Prakash
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Effective Field Theories are an established framework to bridge the gap between UV and low energy theories. In the context of the Standard Model, the bottom-up approach extends its operator set and thus equips us to astutely probe its observables while encapsulating indirect evidence of unknown high scale theories. While the top-down approach, on the other hand, employs functional techniques to integrate out the heavy fields from a BSM Lagrangian leading to a set of SMEFT operators. An intricate interplay of the two approaches enhances the efficacy of the SMEFT in making meaningful predictions while providing a platform for conducting a coherent comparison of new physics scenarios. However, while the bottom-up approach fails to indicate the origin of the effective operators, the top-down approach is highly dependent on the specific model assumptions of the UV theory. We, for the first time, are proposing a diagrammatic approach to establish selection criteria for the allowed heavy field representations corresponding to each SMEFT operator. This, in turn, paves the way to construct observable driven new physics models. While we take a predominantly minimalistic approach, we also highlight the necessity for non-minimal interactions for certain operators.

rate research

Read More

CoDEx is a Mathematica package that calculates the Wilson Coefficients (WCs) corresponding to effective operators up to mass dimension-6. Once the part of the Lagrangian involving single as well as multiple degenerate heavy fields, belonging to some Beyond Standard Model (BSM) theory, is given, the package can then integrate out propagators from the tree as well as 1-loop diagrams of that BSM theory. It then computes the associated WCs up to 1-loop level, for two different bases: Warsaw and SILH. CoDEx requires only very basic information about the heavy field(s), e.g., Colour, Isospin, Hyper-charge, Mass, and Spin. The package first calculates the WCs at the high scale (mass of the heavy field(s)). We then have an option to perform the renormalisation group evolutions (RGEs) of these operators in Warsaw basis, a complete one (unlike SILH), using the anomalous dimension matrix. Thus, one can get all effective operators at the electro-weak scale, generated from any such BSM theory, containing heavy fields of spin: 0, 1/2, and 1. We have provided many example models (both here and in the package-documentation) that more or less encompass different choices of heavy fields and interactions. Relying on the status of the present day precision data, we restrict ourselves up to dimension-6 effective operators. This will be generalised for any dimensional operators in a later version. Site: https://effexteam.github.io/CoDEx
Constraining CP-violating interactions in effective field theory (EFT) of dimension six faces two challenges. Firstly, degeneracies in the multi-dimensional space of Wilson coefficients have to be lifted. Secondly, quadratic contributions of CP-odd dimension six operators are difficult to disentangle from squared contributions of CP-even dimension six operators and from linear contributions of dimension eight operators. Both of these problems are present when new sources of CP-violation are present in the interactions between the Higgs boson and heavy strongly-interacting fermions. We show that degeneracies in the Wilson coefficients can be removed by combining measurements of Higgs-plus-two-jet production via gluon fusion with measurements of top-pair associated Higgs production. In addition, we demonstrate that the sensitivity of the analysis can be improved by exploiting the top-quark threshold in the gluon fusion process. Finally, we substantiate a perturbative argument about the validity of EFT by comparing the quadratic and linear contributions from CP-odd dimension six operators and use this to show explicitly that high statistics measurements at future colliders enable the extraction of perturbatively robust constraints on the associated Wilson coefficients.
The increasing interest in the phenomenology of the Standard Model Effective Field Theory (SMEFT), has led to the development of a wide spectrum of public codes which implement automatically different aspects of the SMEFT for phenomenological applications. In order to discuss the present and future of such efforts, the SMEFT-Tools 2019 Workshop was held at the IPPP Durham on the 12th-14th June 2019. Here we collect and summarize the contents of this workshop.
230 - Motoi Endo , Satoshi Mishima , 2020
We revisit electroweak radiative corrections to Standard Model Effective Field Theory (SMEFT) operators which are relevant for the $B$-meson semileptonic decays. The one-loop matching formulae onto the low-energy effective field theory are provided without imposing any flavor symmetry. The on-shell conditions are applied especially in dealing with quark-flavor mixings. Also, the gauge independence is shown explicitly in the $R_xi$ gauge.
We present a model-independent anatomy of the $Delta F=2$ transitions $K^0-bar K^0$, $B_{s,d}-bar B_{s,d}$ and $D^0-bar D^0$ in the context of the Standard Model Effective Field Theory (SMEFT). We present two master formulae for the mixing amplitude $big[M_{12} big]_text{BSM}$. One in terms of the Wilson coefficients (WCs) of the Low-Energy Effective Theory (LEFT) operators evaluated at the electroweak scale $mu_text{ew}$ and one in terms of the WCs of the SMEFT operators evaluated at the BSM scale $Lambda$. The coefficients $P_a^{ij}$ entering these formulae contain all the information below the scales $mu_text{ew}$ and $Lambda$, respectively. Renormalization group effects from the top-quark Yukawa coupling play the most important role. The collection of the individual contributions of the SMEFT operators to $big[M_{12}big]_text{BSM}$ can be considered as the SMEFT ATLAS of $Delta F=2$ transitions and constitutes a travel guide to such transitions far beyond the scales explored by the LHC. We emphasize that this ATLAS depends on whether the down-basis or the up-basis for SMEFT operators is considered. We illustrate this technology with tree-level exchanges of heavy gauge bosons ($Z^prime$, $G^prime$) and corresponding heavy scalars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا