Do you want to publish a course? Click here

SMEFT ATLAS of $Delta F=2$ Transitions

204   0   0.0 ( 0 )
 Added by Jason Aebischer
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We present a model-independent anatomy of the $Delta F=2$ transitions $K^0-bar K^0$, $B_{s,d}-bar B_{s,d}$ and $D^0-bar D^0$ in the context of the Standard Model Effective Field Theory (SMEFT). We present two master formulae for the mixing amplitude $big[M_{12} big]_text{BSM}$. One in terms of the Wilson coefficients (WCs) of the Low-Energy Effective Theory (LEFT) operators evaluated at the electroweak scale $mu_text{ew}$ and one in terms of the WCs of the SMEFT operators evaluated at the BSM scale $Lambda$. The coefficients $P_a^{ij}$ entering these formulae contain all the information below the scales $mu_text{ew}$ and $Lambda$, respectively. Renormalization group effects from the top-quark Yukawa coupling play the most important role. The collection of the individual contributions of the SMEFT operators to $big[M_{12}big]_text{BSM}$ can be considered as the SMEFT ATLAS of $Delta F=2$ transitions and constitutes a travel guide to such transitions far beyond the scales explored by the LHC. We emphasize that this ATLAS depends on whether the down-basis or the up-basis for SMEFT operators is considered. We illustrate this technology with tree-level exchanges of heavy gauge bosons ($Z^prime$, $G^prime$) and corresponding heavy scalars.

rate research

Read More

We investigate model independent top-quark corrections to $Delta F = 2$ processes for the down-type quarks within the framework of the Standard Model Effective Field Theory. Dimension-six $Delta F = 1$ operators contribute to them through renormalization group evolutions and matching conditions. We provide a complete one-loop matching formula from the top quarks for $Delta F=2$ transitions. We also demonstrate these corrections on $Delta M_{B_s}$ in the left-right symmetric model, which are compared with the conventional calculation.
Recently the RBC-UKQCD lattice collaboration presented new results for the hadronic matrix elements relevant for the ratio $varepsilon/varepsilon$ in the Standard Model (SM). With the present knowledge of the Wilson coefficients and isospin breaking effects there is still much room for new physics (NP) contributions to $varepsilon/varepsilon$ which could both enhance or suppress this ratio to agree with the data. The new SM value for the $K^0-bar K^0$ mass difference $Delta M_K$ from RBC-UKQCD is on the other hand by $2sigma$ above the data hinting for NP required to suppress $Delta M_K$. Simultaneously the most recent results for $K^+rightarrowpi^+ ubar u$ from NA62 and for $K_{L}rightarrowpi^0 ubar u$ from KOTO still allow for significant NP contributions. We point out that the suppression of $Delta M_K$ by NP requires the presence of new CP-violating phases with interesting implications for $Ktopi ubar u$, $K_Stomu^+mu^-$ and $K_Ltopi^0ell^+ell^-$ decays. Considering a $Z^prime$-scenario within the SMEFT we analyze the dependence of all these observables on the size of NP still allowed by the data on $varepsilon/varepsilon$. The NP QCD penguin scenario for $varepsilon/varepsilon$ is excluded by SMEFT renormalization group effects in $varepsilon_K$ so that NP effects in $varepsilon/varepsilon$ are governed by electroweak penguins. We also investigate for the first time whether the presence of a heavy $Z^prime$ with flavour violating couplings could generate through top Yukawa renormalization group effects FCNCs mediated by the SM $Z$-boson. The outcome turns out to be very interesting.
117 - Jacky Kumar 2017
We study deviations between MSSM and NMSSM in the predictions of $Delta F=2$ processes. We found that there can be two sources which can cause such deviations, emph{i.e}, due to certain neutralino-gluino cross box diagrams and due to well known double penguin diagrams. Both are effective at large $tan beta$. In addition to this, taking into account 8 TeV direct search constraints from the heavy Higgs searches, we study the maximum allowed MFV like new physics (NP) effects on $Delta M_s$ in the two models. In NMSSM such NP effects can be as large as $25 %$, on the other hand in MSSM such large contributions are severely constrained.
The increasing interest in the phenomenology of the Standard Model Effective Field Theory (SMEFT), has led to the development of a wide spectrum of public codes which implement automatically different aspects of the SMEFT for phenomenological applications. In order to discuss the present and future of such efforts, the SMEFT-Tools 2019 Workshop was held at the IPPP Durham on the 12th-14th June 2019. Here we collect and summarize the contents of this workshop.
We reconsider the complete set of four-quark operators in the Weak Effective Theory (WET) for non-leptonic $Delta F=1$ decays that govern $sto d$ and $bto d, s$ transitions in the Standard Model (SM) and beyond, at the Next-to-Leading Order (NLO) in QCD. We discuss cases with different numbers $N_f$ of active flavours, intermediate threshold corrections, as well as the issue of transformations between operator bases beyond leading order to facilitate the matching to high-energy completions or the Standard Model Effective Field Theory (SMEFT) at the electroweak scale. As a first step towards a SMEFT NLO analysis of $Ktopipi$ and non-leptonic $B$-meson decays, we calculate the relevant WET Wilson coefficients including two-loop contributions to their renormalization group running, and express them in terms of the Wilson coefficients in a particular operator basis for which the one-loop matching to SMEFT is already known.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا