Do you want to publish a course? Click here

A Cooperative Architecture of Data Offloading and Sharing for Smart Healthcare with Blockchain

157   0   0.0 ( 0 )
 Added by Dinh Nguyen
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The healthcare industry has witnessed significant transformations in e-health services where Electronic Health Records (EHRs) are transferred to mobile edge clouds to facilitate healthcare. Many edge cloud-based system designs have been proposed, but some technical challenges still remain, such as low quality of services (QoS), data privacy and system security due to centralized healthcare architectures. In this paper, we propose a novel hybrid approach of data offloading and data sharing for healthcare using edge cloud and blockchain. First, an efficient data offloading scheme is proposed where IoT health data can be offloaded to nearby edge servers for data processing with privacy awareness. Then, a data sharing scheme is integrated to enable data exchange among healthcare users via blockchain. Particularly, a trustworthy access control mechanism is developed using smart contracts for access authentication to achieve secure EHRs sharing. Implementation results from extensive real-world experiments show the superior advantages of the proposal over the existing schemes in terms of improved QoS, enhanced data privacy and security, and low smart contract costs.



rate research

Read More

Massive amounts of multimedia data (i.e., text, audio, video, graphics and animation) are being generated everyday. Conventionally, multimedia data are managed by the platforms maintained by multimedia service providers, which are generally designed using centralised architecture. However, such centralised architecture may lead to a single point of failure and disputes over royalties or other rights. It is hard to ensure the data integrity and track fulfilment of obligations listed on the copyright agreement. To tackle these issues, in this paper, we present a blockchain-based platform architecture for multimedia data management. We adopt self-sovereign identity for identity management and design a multi-level capability-based mechanism for access control. We implement a proof-of-concept prototype using the proposed approach and evaluate it using a use case. The results show that the proposed approach is feasible and has scalable performance.
There is increased interest in smart vehicles acting as both data consumers and producers in smart cities. Vehicles can use smart city data for decision-making, such as dynamic routing based on traffic conditions. Moreover, the multitude of embedded sensors in vehicles can collectively produce a rich data set of the urban landscape that can be used to provide a range of services. Key to the success of this vision is a scalable and private architecture for trusted data sharing. This paper proposes a framework called SpeedyChain, that leverages blockchain technology to allow smart vehicles to share their data while maintaining privacy, integrity, resilience and non-repudiation in a decentralized, and tamper-resistant manner. Differently from traditional blockchain usage (e.g., Bitcoin and Ethereum), the proposed framework uses a blockchain design that decouples the data stored in the transactions from the block header, thus allowing for fast addition of data to the blocks. Furthermore, an expiration time for each block to avoid large sized blocks is proposed. This paper also presents an evaluation of the proposed framework in a network emulator to demonstrate its benefits.
Permissioned blockchain such as Hyperledger fabric enables a secure supply chain model in Industrial Internet of Things (IIoT) through multichannel and private data collection mechanisms. Sharing of Industrial data including private data exchange at every stage between supply chain partners helps to improve product quality, enable future forecast, and enhance management activities. However, the existing data sharing and querying mechanism in Hyperledger fabric is not suitable for supply chain environment in IIoT because the queries are evaluated on actual data stored on ledger which consists of sensitive information such as business secrets, and special discounts offered to retailers and individuals. To solve this problem, we propose a differential privacy-based permissioned blockchain using Hyperledger fabric to enable private data sharing in supply chain in IIoT (DH-IIoT). We integrate differential privacy into the chaindcode (smart contract) of Hyperledger fabric to achieve privacy preservation. As a result, the query response consists of perturbed data which protects the sensitive information in the ledger. The proposed work (DH-IIoT) is evaluated by simulating a permissioned blockchain using Hyperledger fabric. We compare our differential privacy integrated chaincode of Hyperledger fabric with the default chaincode setting of Hyperledger fabric for supply chain scenario. The results confirm that the proposed work maintains 96.15% of accuracy in the shared data while guarantees the protection of sensitive ledgers data.
Known for its decentralized and tamper-aware properties, blockchain is attractive to enhance the infrastructure of systems that have been constrained by traditionally centralized and vendor-locked environments. Although blockchain has commonly been used as the operational model behind cryptocurrency, it has far more foreseeable utilities in domains like healthcare, where efficient data flow is highly demanded. Particularly, blockchain and related technologies have been touted as foundational technologies for addressing healthcare interoperability challenges, such as promoting effective communications and securing data exchanges across various healthcare systems. Despite the increasing interests in leveraging blockchain technology to improve healthcare infrastructures, a major gap in literature is the lack of available recommendations for concrete architectural styles and design considerations for creating blockchain-based apps and systems with a healthcare focus. This research provides two contributions to bridge the gap in existing research. First, we introduce a pattern sequence for designing blockchain-based healthcare systems focused on secure and at-scale data exchange. Our approach adapts traditional software patterns and proposes novel patterns that take into account both the technical requirements specific to healthcare systems and the implications of these requirements on naive blockchain-based solutions. Second, we provide a pattern-oriented reference architecture using an example application of the pattern sequence for guiding software developers to design interoperable (on the technical level) healthcare IT systems atop blockchain-based infrastructures. The reference architecture focuses on minimizing storage requirements on-chain, preserving the privacy of sensitive information, facilitating scalable communications, and maximizing evolvability of the system.
Cyber attacks are becoming more frequent and sophisticated, introducing significant challenges for organizations to protect their systems and data from threat actors. Today, threat actors are highly motivated, persistent, and well-founded and operate in a coordinated manner to commit a diversity of attacks using various sophisticated tactics, techniques, and procedures. Given the risks these threats present, it has become clear that organizations need to collaborate and share cyber threat information (CTI) and use it to improve their security posture. In this paper, we present TRADE -- TRusted Anonymous Data Exchange -- a collaborative, distributed, trusted, and anonymized CTI sharing platform based on blockchain technology. TRADE uses a blockchain-based access control framework designed to provide essential features and requirements to incentivize and encourage organizations to share threat intelligence information. In TRADE, organizations can fully control their data by defining sharing policies enforced by smart contracts used to control and manage CTI sharing in the network. TRADE allows organizations to preserve their anonymity while keeping organizations fully accountable for their action in the network. Finally, TRADE can be easily integrated within existing threat intelligence exchange protocols - such as trusted automated exchange of intelligence information (TAXII) and OpenDXL, thereby allowing a fast and smooth technology adaptation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا