Do you want to publish a course? Click here

Universality in one-dimensional scattering with general dispersion relations

123   0   0.0 ( 0 )
 Added by Yidan Wang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Many synthetic quantum systems allow particles to have dispersion relations that are neither linear nor quadratic functions. Here, we explore single-particle scattering in one dimension when the dispersion relation is $epsilon(k)=pm |d|k^m$, where $mgeq 2$ is an integer. We study impurity scattering problems in which a single-particle in a one-dimensional waveguide scatters off of an inhomogeneous, discrete set of sites locally coupled to the waveguide. For a large class of these problems, we rigorously prove that when there are no bright zero-energy eigenstates, the $S$-matrix evaluated at an energy $Eto 0$ converges to a universal limit that is only dependent on $m$. We also give a generalization of a key index theorem in quantum scattering theory known as Levinsons theorem -- which relates the scattering phases to the number of bound states -- to impurity scattering for these more general dispersion relations.



rate research

Read More

We derive dispersion estimates for solutions of a one-dimensional discrete Dirac equations with a potential. In particular, we improve our previous result, weakening the conditions on the potential. To this end we also provide new results concerning scattering for the corresponding perturbed Dirac operators which are of independent interest. Most notably, we show that the reflection and transmission coefficients belong to the Wiener algebra.
We derive dispersion estimates for solutions of the one-dimensional discrete perturbed Dirac equation. To this end we develop basic scattering theory and establish a limiting absorption principle for discrete perturbed Dirac operators.
We introduce a numerical method to obtain approximate eigenvalues for some problems of Sturm-Liouville type. As an application, we consider an infinite square well in one dimension in which the mass is a function of the position. Two situations are studied, one in which the mass is a differentiable function of the position depending on a parameter $b$. In the second one the mass is constant except for a discontinuity at some point. When the parameter $b$ goes to infinity, the function of the mass converges to the situation described in the second case. One shows that the energy levels vary very slowly with $b$ and that in the limit as $b$ goes to infinity, we recover the energy levels for the second situation.
We exploit mappings between quantum and classical systems in order to obtain a class of two-dimensional classical systems with critical properties equivalent to those of the class of one-dimensional quantum systems discussed in a companion paper (J. Hutchinson, J. P. Keating, and F. Mezzadri, arXiv:1503.05732). In particular, we use three approaches: the Trotter-Suzuki mapping; the method of coherent states; and a calculation based on commuting the quantum Hamiltonian with the transfer matrix of a classical system. This enables us to establish universality of certain critical phenomena by extension from the results in our previous article for the classical systems identified.
Resource theories provide a general framework for the characterization of properties of physical systems in quantum mechanics and beyond. Here, we introduce methods for the quantification of resources in general probabilistic theories (GPTs), focusing in particular on the technical issues associated with infinite-dimensional state spaces. We define a universal resource quantifier based on the robustness measure, and show it to admit a direct operational meaning: in any GPT, it quantifies the advantage that a given resource state enables in channel discrimination tasks over all resourceless states. We show that the robustness acts as a faithful and strongly monotonic measure in any resource theory described by a convex and closed set of free states, and can be computed through a convex conic optimization problem. Specializing to continuous-variable quantum mechanics, we obtain additional bounds and relations, allowing an efficient computation of the measure and comparison with other monotones. We demonstrate applications of the robustness to several resources of physical relevance: optical nonclassicality, entanglement, genuine non-Gaussianity, and coherence. In particular, we establish exact expressions for various classes of states, including Fock states and squeezed states in the resource theory of nonclassicality and general pure states in the resource theory of entanglement, as well as tight bounds applicable in general cases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا