Do you want to publish a course? Click here

Scattering Properties and Dispersion Estimates for a One-Dimensional Discrete Dirac Equation

352   0   0.0 ( 0 )
 Added by Gerald Teschl
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We derive dispersion estimates for solutions of a one-dimensional discrete Dirac equations with a potential. In particular, we improve our previous result, weakening the conditions on the potential. To this end we also provide new results concerning scattering for the corresponding perturbed Dirac operators which are of independent interest. Most notably, we show that the reflection and transmission coefficients belong to the Wiener algebra.



rate research

Read More

We derive dispersion estimates for solutions of the one-dimensional discrete perturbed Dirac equation. To this end we develop basic scattering theory and establish a limiting absorption principle for discrete perturbed Dirac operators.
We show that for a Jacobi operator with coefficients whose (j+1)th moments are summable the jth derivative of the scattering matrix is in the Wiener algebra of functions with summable Fourier coefficients. We use this result to improve the known dispersive estimates with integrable time decay for the time dependent Jacobi equation in the resonant case.
We show that for a one-dimensional Schrodinger operator with a potential whose (j+1)th moment is integrable the jth derivative of the scattering matrix is in the Wiener algebra of functions with integrable Fourier transforms. We use this result to improve the known dispersive estimates with integrable time decay for the one-dimensional Schrodinger equation in the resonant case.
We study the hyperboloidal initial value problem for the one-dimensional wave equation perturbed by a smooth potential. We show that the evolution decomposes into a finite-dimensional spectral part and an infinite-dimensional radiation part. For the radiation part we prove a set of Strichartz estimates. As an application we study the long-time asymptotics of Yang-Mills fields on a wormhole spacetime.
We show that for a one-dimensional Schrodinger operator with a potential whose first moment is integrable the scattering matrix is in the unital Wiener algebra of functions with integrable Fourier transforms. Then we use this to derive dispersion estimates for solutions of the associated Schrodinger and Klein-Gordon equations. In particular, we remove the additional decay conditions in the case where a resonance is present at the edge of the continuous spectrum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا