No Arabic abstract
Image virtual try-on replaces the clothes on a person image with a desired in-shop clothes image. It is challenging because the person and the in-shop clothes are unpaired. Existing methods formulate virtual try-on as either in-painting or cycle consistency. Both of these two formulations encourage the generation networks to reconstruct the input image in a self-supervised manner. However, existing methods do not differentiate clothing and non-clothing regions. A straight-forward generation impedes virtual try-on quality because of the heavily coupled image contents. In this paper, we propose a Disentangled Cycle-consistency Try-On Network (DCTON). The DCTON is able to produce highly-realistic try-on images by disentangling important components of virtual try-on including clothes warping, skin synthesis, and image composition. To this end, DCTON can be naturally trained in a self-supervised manner following cycle consistency learning. Extensive experiments on challenging benchmarks show that DCTON outperforms state-of-the-art approaches favorably.
2D image-based virtual try-on has attracted increased attention from the multimedia and computer vision communities. However, most of the existing image-based virtual try-on methods directly put both person and the in-shop clothing representations together, without considering the mutual correlation between them. What is more, the long-range information, which is crucial for generating globally consistent results, is also hard to be established via the regular convolution operation. To alleviate these two problems, in this paper we propose a novel two-stage Cloth Interactive Transformer (CIT) for virtual try-on. In the first stage, we design a CIT matching block, aiming to perform a learnable thin-plate spline transformation that can capture more reasonable long-range relation. As a result, the warped in-shop clothing looks more natural. In the second stage, we propose a novel CIT reasoning block for establishing the global mutual interactive dependence. Based on this mutual dependence, the significant region within the input data can be highlighted, and consequently, the try-on results can become more realistic. Extensive experiments on a public fashion dataset demonstrate that our CIT can achieve the new state-of-the-art virtual try-on performance both qualitatively and quantitatively. The source code and trained models are available at https://github.com/Amazingren/CIT.
Image virtual try-on task has abundant applications and has become a hot research topic recently. Existing 2D image-based virtual try-on methods aim to transfer a target clothing image onto a reference person, which has two main disadvantages: cannot control the size and length precisely; unable to accurately estimate the users figure in the case of users wearing thick clothes, resulting in inaccurate dressing effect. In this paper, we put forward an akin task that aims to dress clothing for underwear models. %, which is also an urgent need in e-commerce scenarios. To solve the above drawbacks, we propose a Shape Controllable Virtual Try-On Network (SC-VTON), where a graph attention network integrates the information of model and clothing to generate the warped clothing image. In addition, the control points are incorporated into SC-VTON for the desired clothing shape. Furthermore, by adding a Splitting Network and a Synthesis Network, we can use clothing/model pair data to help optimize the deformation module and generalize the task to the typical virtual try-on task. Extensive experiments show that the proposed method can achieve accurate shape control. Meanwhile, compared with other methods, our method can generate high-resolution results with detailed textures.
This paper presents a learning-based clothing animation method for highly efficient virtual try-on simulation. Given a garment, we preprocess a rich database of physically-based dressed character simulations, for multiple body shapes and animations. Then, using this database, we train a learning-based model of cloth drape and wrinkles, as a function of body shape and dynamics. We propose a model that separates global garment fit, due to body shape, from local garment wrinkles, due to both pose dynamics and body shape. We use a recurrent neural network to regress garment wrinkles, and we achieve highly plausible nonlinear effects, in contrast to the blending artifacts suffered by previous methods. At runtime, dynamic virtual try-on animations are produced in just a few milliseconds for garments with thousands of triangles. We show qualitative and quantitative analysis of results
Despite recent progress on image-based virtual try-on, current methods are constraint by shared warping networks and thus fail to synthesize natural try-on results when faced with clothing categories that require different warping operations. In this paper, we address this problem by finding clothing category-specific warping networks for the virtual try-on task via Neural Architecture Search (NAS). We introduce a NAS-Warping Module and elaborately design a bilevel hierarchical search space to identify the optimal network-level and operation-level flow estimation architecture. Given the network-level search space, containing different numbers of warping blocks, and the operation-level search space with different convolution operations, we jointly learn a combination of repeatable warping cells and convolution operations specifically for the clothing-person alignment. Moreover, a NAS-Fusion Module is proposed to synthesize more natural final try-on results, which is realized by leveraging particular skip connections to produce better-fused features that are required for seamlessly fusing the warped clothing and the unchanged person part. We adopt an efficient and stable one-shot searching strategy to search the above two modules. Extensive experiments demonstrate that our WAS-VTON significantly outperforms the previous fixed-architecture try-on methods with more natural warping results and virtual try-on results.
We present a learning-based approach for virtual try-on applications based on a fully convolutional graph neural network. In contrast to existing data-driven models, which are trained for a specific garment or mesh topology, our fully convolutional model can cope with a large family of garments, represented as parametric predefined 2D panels with arbitrary mesh topology, including long dresses, shirts, and tight tops. Under the hood, our novel geometric deep learning approach learns to drape 3D garments by decoupling the three different sources of deformations that condition the fit of clothing: garment type, target body shape, and material. Specifically, we first learn a regressor that predicts the 3D drape of the input parametric garment when worn by a mean body shape. Then, after a mesh topology optimization step where we generate a sufficient level of detail for the input garment type, we further deform the mesh to reproduce deformations caused by the target body shape. Finally, we predict fine-scale details such as wrinkles that depend mostly on the garment material. We qualitatively and quantitatively demonstrate that our fully convolutional approach outperforms existing methods in terms of generalization capabilities and memory requirements, and therefore it opens the door to more general learning-based models for virtual try-on applications.