Do you want to publish a course? Click here

WAS-VTON: Warping Architecture Search for Virtual Try-on Network

145   0   0.0 ( 0 )
 Added by Zhenyu Xie
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Despite recent progress on image-based virtual try-on, current methods are constraint by shared warping networks and thus fail to synthesize natural try-on results when faced with clothing categories that require different warping operations. In this paper, we address this problem by finding clothing category-specific warping networks for the virtual try-on task via Neural Architecture Search (NAS). We introduce a NAS-Warping Module and elaborately design a bilevel hierarchical search space to identify the optimal network-level and operation-level flow estimation architecture. Given the network-level search space, containing different numbers of warping blocks, and the operation-level search space with different convolution operations, we jointly learn a combination of repeatable warping cells and convolution operations specifically for the clothing-person alignment. Moreover, a NAS-Fusion Module is proposed to synthesize more natural final try-on results, which is realized by leveraging particular skip connections to produce better-fused features that are required for seamlessly fusing the warped clothing and the unchanged person part. We adopt an efficient and stable one-shot searching strategy to search the above two modules. Extensive experiments demonstrate that our WAS-VTON significantly outperforms the previous fixed-architecture try-on methods with more natural warping results and virtual try-on results.



rate research

Read More

Virtual 3D try-on can provide an intuitive and realistic view for online shopping and has a huge potential commercial value. However, existing 3D virtual try-on methods mainly rely on annotated 3D human shapes and garment templates, which hinders their applications in practical scenarios. 2D virtual try-on approaches provide a faster alternative to manipulate clothed humans, but lack the rich and realistic 3D representation. In this paper, we propose a novel Monocular-to-3D Virtual Try-On Network (M3D-VTON) that builds on the merits of both 2D and 3D approaches. By integrating 2D information efficiently and learning a mapping that lifts the 2D representation to 3D, we make the first attempt to reconstruct a 3D try-on mesh only taking the target clothing and a person image as inputs. The proposed M3D-VTON includes three modules: 1) The Monocular Prediction Module (MPM) that estimates an initial full-body depth map and accomplishes 2D clothes-person alignment through a novel two-stage warping procedure; 2) The Depth Refinement Module (DRM) that refines the initial body depth to produce more detailed pleat and face characteristics; 3) The Texture Fusion Module (TFM) that fuses the warped clothing with the non-target body part to refine the results. We also construct a high-quality synthesized Monocular-to-3D virtual try-on dataset, in which each person image is associated with a front and a back depth map. Extensive experiments demonstrate that the proposed M3D-VTON can manipulate and reconstruct the 3D human body wearing the given clothing with compelling details and is more efficient than other 3D approaches.
With the development of Generative Adversarial Network, image-based virtual try-on methods have made great progress. However, limited work has explored the task of video-based virtual try-on while it is important in real-world applications. Most existing video-based virtual try-on methods usually require clothing templates and they can only generate blurred and low-resolution results. To address these challenges, we propose a Memory-based Video virtual Try-On Network (MV-TON), which seamlessly transfers desired clothes to a target person without using any clothing templates and generates high-resolution realistic videos. Specifically, MV-TON consists of two modules: 1) a try-on module that transfers the desired clothes from model images to frame images by pose alignment and region-wise replacing of pixels; 2) a memory refinement module that learns to embed the existing generated frames into the latent space as external memory for the following frame generation. Experimental results show the effectiveness of our method in the video virtual try-on task and its superiority over other existing methods.
118 - Bin Ren , Hao Tang , Fanyang Meng 2021
2D image-based virtual try-on has attracted increased attention from the multimedia and computer vision communities. However, most of the existing image-based virtual try-on methods directly put both person and the in-shop clothing representations together, without considering the mutual correlation between them. What is more, the long-range information, which is crucial for generating globally consistent results, is also hard to be established via the regular convolution operation. To alleviate these two problems, in this paper we propose a novel two-stage Cloth Interactive Transformer (CIT) for virtual try-on. In the first stage, we design a CIT matching block, aiming to perform a learnable thin-plate spline transformation that can capture more reasonable long-range relation. As a result, the warped in-shop clothing looks more natural. In the second stage, we propose a novel CIT reasoning block for establishing the global mutual interactive dependence. Based on this mutual dependence, the significant region within the input data can be highlighted, and consequently, the try-on results can become more realistic. Extensive experiments on a public fashion dataset demonstrate that our CIT can achieve the new state-of-the-art virtual try-on performance both qualitatively and quantitatively. The source code and trained models are available at https://github.com/Amazingren/CIT.
134 - Xin Gao 2021
Image virtual try-on task has abundant applications and has become a hot research topic recently. Existing 2D image-based virtual try-on methods aim to transfer a target clothing image onto a reference person, which has two main disadvantages: cannot control the size and length precisely; unable to accurately estimate the users figure in the case of users wearing thick clothes, resulting in inaccurate dressing effect. In this paper, we put forward an akin task that aims to dress clothing for underwear models. %, which is also an urgent need in e-commerce scenarios. To solve the above drawbacks, we propose a Shape Controllable Virtual Try-On Network (SC-VTON), where a graph attention network integrates the information of model and clothing to generate the warped clothing image. In addition, the control points are incorporated into SC-VTON for the desired clothing shape. Furthermore, by adding a Splitting Network and a Synthesis Network, we can use clothing/model pair data to help optimize the deformation module and generalize the task to the typical virtual try-on task. Extensive experiments show that the proposed method can achieve accurate shape control. Meanwhile, compared with other methods, our method can generate high-resolution results with detailed textures.
This paper presents a learning-based clothing animation method for highly efficient virtual try-on simulation. Given a garment, we preprocess a rich database of physically-based dressed character simulations, for multiple body shapes and animations. Then, using this database, we train a learning-based model of cloth drape and wrinkles, as a function of body shape and dynamics. We propose a model that separates global garment fit, due to body shape, from local garment wrinkles, due to both pose dynamics and body shape. We use a recurrent neural network to regress garment wrinkles, and we achieve highly plausible nonlinear effects, in contrast to the blending artifacts suffered by previous methods. At runtime, dynamic virtual try-on animations are produced in just a few milliseconds for garments with thousands of triangles. We show qualitative and quantitative analysis of results
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا