Do you want to publish a course? Click here

Learning-Based Animation of Clothing for Virtual Try-On

103   0   0.0 ( 0 )
 Added by Dan Casas
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

This paper presents a learning-based clothing animation method for highly efficient virtual try-on simulation. Given a garment, we preprocess a rich database of physically-based dressed character simulations, for multiple body shapes and animations. Then, using this database, we train a learning-based model of cloth drape and wrinkles, as a function of body shape and dynamics. We propose a model that separates global garment fit, due to body shape, from local garment wrinkles, due to both pose dynamics and body shape. We use a recurrent neural network to regress garment wrinkles, and we achieve highly plausible nonlinear effects, in contrast to the blending artifacts suffered by previous methods. At runtime, dynamic virtual try-on animations are produced in just a few milliseconds for garments with thousands of triangles. We show qualitative and quantitative analysis of results



rate research

Read More

With the development of Generative Adversarial Network, image-based virtual try-on methods have made great progress. However, limited work has explored the task of video-based virtual try-on while it is important in real-world applications. Most existing video-based virtual try-on methods usually require clothing templates and they can only generate blurred and low-resolution results. To address these challenges, we propose a Memory-based Video virtual Try-On Network (MV-TON), which seamlessly transfers desired clothes to a target person without using any clothing templates and generates high-resolution realistic videos. Specifically, MV-TON consists of two modules: 1) a try-on module that transfers the desired clothes from model images to frame images by pose alignment and region-wise replacing of pixels; 2) a memory refinement module that learns to embed the existing generated frames into the latent space as external memory for the following frame generation. Experimental results show the effectiveness of our method in the video virtual try-on task and its superiority over other existing methods.
118 - Bin Ren , Hao Tang , Fanyang Meng 2021
2D image-based virtual try-on has attracted increased attention from the multimedia and computer vision communities. However, most of the existing image-based virtual try-on methods directly put both person and the in-shop clothing representations together, without considering the mutual correlation between them. What is more, the long-range information, which is crucial for generating globally consistent results, is also hard to be established via the regular convolution operation. To alleviate these two problems, in this paper we propose a novel two-stage Cloth Interactive Transformer (CIT) for virtual try-on. In the first stage, we design a CIT matching block, aiming to perform a learnable thin-plate spline transformation that can capture more reasonable long-range relation. As a result, the warped in-shop clothing looks more natural. In the second stage, we propose a novel CIT reasoning block for establishing the global mutual interactive dependence. Based on this mutual dependence, the significant region within the input data can be highlighted, and consequently, the try-on results can become more realistic. Extensive experiments on a public fashion dataset demonstrate that our CIT can achieve the new state-of-the-art virtual try-on performance both qualitatively and quantitatively. The source code and trained models are available at https://github.com/Amazingren/CIT.
134 - Xin Gao 2021
Image virtual try-on task has abundant applications and has become a hot research topic recently. Existing 2D image-based virtual try-on methods aim to transfer a target clothing image onto a reference person, which has two main disadvantages: cannot control the size and length precisely; unable to accurately estimate the users figure in the case of users wearing thick clothes, resulting in inaccurate dressing effect. In this paper, we put forward an akin task that aims to dress clothing for underwear models. %, which is also an urgent need in e-commerce scenarios. To solve the above drawbacks, we propose a Shape Controllable Virtual Try-On Network (SC-VTON), where a graph attention network integrates the information of model and clothing to generate the warped clothing image. In addition, the control points are incorporated into SC-VTON for the desired clothing shape. Furthermore, by adding a Splitting Network and a Synthesis Network, we can use clothing/model pair data to help optimize the deformation module and generalize the task to the typical virtual try-on task. Extensive experiments show that the proposed method can achieve accurate shape control. Meanwhile, compared with other methods, our method can generate high-resolution results with detailed textures.
Image-based virtual try-on involves synthesizing perceptually convincing images of a model wearing a particular garment and has garnered significant research interest due to its immense practical applicability. Recent methods involve a two stage process: i) warping of the garment to align with the model ii) texture fusion of the warped garment and target model to generate the try-on output. Issues arise due to the non-rigid nature of garments and the lack of geometric information about the model or the garment. It often results in improper rendering of granular details. We propose ZFlow, an end-to-end framework, which seeks to alleviate these concerns regarding geometric and textural integrity (such as pose, depth-ordering, skin and neckline reproduction) through a combination of gated aggregation of hierarchical flow estimates termed Gated Appearance Flow, and dense structural priors at various stage of the network. ZFlow achieves state-of-the-art results as observed qualitatively, and on quantitative benchmarks of image quality (PSNR, SSIM, and FID). The paper presents extensive comparisons with other existing solutions including a detailed user study and ablation studies to gauge the effect of each of our contributions on multiple datasets.
Image virtual try-on replaces the clothes on a person image with a desired in-shop clothes image. It is challenging because the person and the in-shop clothes are unpaired. Existing methods formulate virtual try-on as either in-painting or cycle consistency. Both of these two formulations encourage the generation networks to reconstruct the input image in a self-supervised manner. However, existing methods do not differentiate clothing and non-clothing regions. A straight-forward generation impedes virtual try-on quality because of the heavily coupled image contents. In this paper, we propose a Disentangled Cycle-consistency Try-On Network (DCTON). The DCTON is able to produce highly-realistic try-on images by disentangling important components of virtual try-on including clothes warping, skin synthesis, and image composition. To this end, DCTON can be naturally trained in a self-supervised manner following cycle consistency learning. Extensive experiments on challenging benchmarks show that DCTON outperforms state-of-the-art approaches favorably.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا