No Arabic abstract
Anomalous Hall effect (AHE) is the key transport signature unlocking topological properties of magnetic materials. While AHE is usually proportional to the magnetization, the nonlinearity suggests the existence of complex magnetic and electron orders. Nonlinear AHE includes the topological Hall effect (THE) that has been widely used to identify the presence of spin chirality in real space. But it can in principle be induced by band structure evolution via Berry curvatures in the reciprocal space. This effect has been largely overlooked due to the intertwined mechanisms in both real and reciprocal spaces. Here, we observed a giant nonlinear AHE with the resistivity up to 383.5 uohm cm, contributing unprecedentedly 97% of the total Hall response in EuCd2As2. Moreover, it can be further enhanced by tilting the magnetic field 30{deg} away from [001] direction, reaching a large anomalous Hall angle up to 21%. Although it shows exactly the same double-peak feature as THE, our scaling analysis and first-principles calculations reveal that the Berry phase is extremely sensitive to the spin canting, and nonlinear AHE is a consequence of band structure evolution under the external magnetic fields. When the spins gradually tilt from the in-plane antiferromagnetic ground state to out-of-plane direction, band crossing and band inversion occur, introducing a bandgap at {Gamma} point at a canting angle of 45{deg}. That contributes to the enhancement of Berry curvature and consequently a large intrinsic Hall conductivity. Our results unequivocally reveal the sensitive dependence of band structures on spin tilting process under external magnetic fields and its pronounced influence on the transport properties, which also need to be taken into consideration in other magnetic materials.
The modulation of the electronic structure by an external magnetic field, which could further control the electronic transport behaviour of a system, is highly desired. Herein, an unconventional anomalous Hall effect (UAHE) was observed during magnetization process in the magnetic Weyl semimetal EuB6, resulting in an unconventional anomalous Hall-conductivity as high as ~1000 {Omega}-1 cm-1 and a Hall-angle up to ~10%. The system even only shows the UAHE, meaning that the anomalous Hall signal completely comes from the UAHE, with UAHE accounting for 100% and 87.5% of the AHE and the total Hall response, respectively. Theoretical calculations revealed that a largely enhanced Berry curvature was induced by the dynamic folding of the topological bands due to the spin-canting effect under external magnetic fields, which further produced the prominent UAHE even in a low-field magnetization process. These findings elucidate the connection between the non-collinear magnetism and the topological electronic state as well as reveal a novel manner to manipulate the transport behaviour of topological electrons.
The combination of topology and magnetism is attractive to produce exotic quantum matters, such as the quantum anomalous Hall state, axion insulators and the magnetic Weyl semimetals. MnBi2Te4, as an intrinsic magnetic topological insulator, provides a platform for the realization of various topological phases. Here we report the intermediate Hall steps in the magnetic hysteresis of MnBi2Te4, where four distinguishable magnetic memory states at zero magnetic field are revealed. The gate and temperature dependence of the magnetic intermediate states indicates the noncollinear spin structure in MnBi2Te4, which can be attributed to the Dzyaloshinskii-Moriya interaction as the coexistence of strong spin-orbit coupling and local inversion symmetry breaking on the surface. Moreover, these multiple magnetic memory states can be programmatically switched among each other through applying designed pulses of magnetic field. Our results provide new insights of the influence of bulk topology on the magnetic states, and the multiple memory states should be promising for spintronic devices.
The spin Hall magnetoresistance (SMR) and anomalous Hall effect (AHE) are observed in a Cr2O3/Ta structure. The structural and surface morphology of Cr2O3/Ta bilayers have been investigated. Temperature dependence of longitudinal and transverse resistances measurements confirm the relationship between SMR and AHE signals in Cr2O3/Ta structure. By means of temperature dependent magnetoresistance measurements, the physical origin of SMR in the Cr2O3/Ta structure is revealed, and the contribution to the SMR from the spin current generated by AHE has been proved. The so-called boundary magnetization due to the bulk antiferromagnetic order in Cr2O3 film may be responsible for the relationship of SMR and AHE in the Cr2O3/Ta bilayer.
The electrical Hall effect can be significantly enhanced through the interplay of the conduction electrons with magnetism, which is known as the anomalous Hall effect (AHE). Whereas the mechanism related to band topology has been intensively studied towards energy efficient electronics, those related to electron scattering have received limited attention. Here we report the observation of giant AHE of electron-scattering origin in a chiral magnet MnGe thin film. The Hall conductivity and Hall angle respectively reach 40,000 {Omega}-1cm-1 and 18 % in the ferromagnetic region, exceeding the conventional limits of AHE of intrinsic and extrinsic origins, respectively. A possible origin of the large AHE is attributed to a new type of skew-scattering via thermally-excited spin-clusters with scalar spin chirality, which is corroborated by the temperature-magnetic-field profile of the AHE being sensitive to the film-thickness or magneto-crystalline anisotropy. Our results may open up a new platform to explore giant AHE responses in various systems, including frustrated magnets and thin-film heterostructures.
Antiferromagnetic (AFM) spintronics exploits the Neel vector as a state variable for novel spintronic devices. Recent studies have shown that the field-like and antidamping spin-orbit torques (SOT) can be used to switch the Neel vector in antiferromagnets with proper symmetries. However, the precise detection of the Neel vector remains a challenging problem. In this letter, we predict that the nonlinear anomalous Hall effect (AHE) can be used to detect the Neel vector in most compensated antiferromagnets supporting the antidamping SOT. We show that the magnetic crystal group symmetry of these antiferromagnets combined with spin-orbit coupling produce a sizable Berry curvature dipole and hence the nonlinear AHE. As a specific example, we consider half-Heusler alloy CuMnSb, which Neel vector can be switched by the antidamping SOT. Based on density functional theory calculations, we show that the nonlinear AHE in CuMnSb results in a measurable Hall voltage under conventional experimental conditions. The strong dependence of the Berry curvature dipole on the Neel vector orientation provides a new detection scheme of the Neel vector based on the nonlinear AHE. Our predictions enrich the material platform for studying non-trivial phenomena associated with the Berry curvature and broaden the range of materials useful for AFM spintronics.