Do you want to publish a course? Click here

Every non-smooth $2$-dimensional Banach space has the Mazur-Ulam property

123   0   0.0 ( 0 )
 Added by Taras Banakh
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

A Banach space $X$ has the $Mazur$-$Ulam$ $property$ if any isometry from the unit sphere of $X$ onto the unit sphere of any other Banach space $Y$ extends to a linear isometry of the Banach spaces $X,Y$. A Banach space $X$ is called $smooth$ if the unit ball has a unique supporting functional at each point of the unit sphere. We prove that each non-smooth 2-dimensional Banach space has the Mazur-Ulam property.



rate research

Read More

80 - Taras Banakh 2021
We prove that every isometry between the unit spheres of 2-dimensional Banach spaces extends to a linear isometry of the Banach spaces. This resolves the famous Tingleys problem in the class of 2-dimensional Banach spaces.
We show that any bounded operator $T$ on a separable, reflexive, infinite-dimensional Banach space $X$ admits a rank one perturbation which has an invariant subspace of infinite dimension and codimension. In the non-reflexive spaces, we show that the same is true for operators which have non-eigenvalues in the boundary of their spectrum. In the Hilbert space, our methods produce perturbations that are also small in norm, improving on an old result of Brown and Pearcy.
181 - D. Freeman , E. Odell , B. Sari 2013
Let $X$ be an infinite dimensional uniformly smooth Banach space. We prove that $X$ contains an infinite equilateral set. That is, there exists a constant $lambda>0$ and an infinite sequence $(x_i)_{i=1}^inftysubset X$ such that $|x_i-x_j|=lambda$ for all $i eq j$.
Within the class of reflexive Banach spaces, we prove a metric characterization of the class of asymptotic-$c_0$ spaces in terms of a bi-Lipschitz invariant which involves metrics that generalize the Hamming metric on $k$-subsets of $mathbb{N}$. We apply this characterization to show that the class of separable, reflexive, and asymptotic-$c_0$ Banach spaces is non-Borel co-analytic. Finally, we introduce a relaxation of the asymptotic-$c_0$ property, called the asymptotic-subsequential-$c_0$ property, which is a partial obstruction to the equi-coarse embeddability of the sequence of Hamming graphs. We present examples of spaces that are asymptotic-subsequential-$c_0$. In particular $T^*(T^*)$ is asymptotic-subsequential-$c_0$ where $T^*$ is Tsirelsons original space.
We clarify the relation between inverse systems, the Radon-Nikodym property, the Asymptotic Norming Property of James-Ho, and the GFDA spaces introduced in our earlier paper on differentiability of Lipschitz maps into Banach spaces.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا