Do you want to publish a course? Click here

Crowdsourced Phrase-Based Tokenization for Low-Resourced Neural Machine Translation: The Case of Fon Language

110   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Building effective neural machine translation (NMT) models for very low-resourced and morphologically rich African indigenous languages is an open challenge. Besides the issue of finding available resources for them, a lot of work is put into preprocessing and tokenization. Recent studies have shown that standard tokenization methods do not always adequately deal with the grammatical, diacritical, and tonal properties of some African languages. That, coupled with the extremely low availability of training samples, hinders the production of reliable NMT models. In this paper, using Fon language as a case study, we revisit standard tokenization methods and introduce Word-Expressions-Based (WEB) tokenization, a human-involved super-words tokenization strategy to create a better representative vocabulary for training. Furthermore, we compare our tokenization strategy to others on the Fon-French and French-Fon translation tasks.



rate research

Read More

A large number of significant assets are available online in English, which is frequently translated into native languages to ease the information sharing among local people who are not much familiar with English. However, manual translation is a very tedious, costly, and time-taking process. To this end, machine translation is an effective approach to convert text to a different language without any human involvement. Neural machine translation (NMT) is one of the most proficient translation techniques amongst all existing machine translation systems. In this paper, we have applied NMT on two of the most morphological rich Indian languages, i.e. English-Tamil and English-Malayalam. We proposed a novel NMT model using Multihead self-attention along with pre-trained Byte-Pair-Encoded (BPE) and MultiBPE embeddings to develop an efficient translation system that overcomes the OOV (Out Of Vocabulary) problem for low resourced morphological rich Indian languages which do not have much translation available online. We also collected corpus from different sources, addressed the issues with these publicly available data and refined them for further uses. We used the BLEU score for evaluating our system performance. Experimental results and survey confirmed that our proposed translator (24.34 and 9.78 BLEU score) outperforms Google translator (9.40 and 5.94 BLEU score) respectively.
In this paper, we present Neural Phrase-based Machine Translation (NPMT). Our method explicitly models the phrase structures in output sequences using Sleep-WAke Networks (SWAN), a recently proposed segmentation-based sequence modeling method. To mitigate the monotonic alignment requirement of SWAN, we introduce a new layer to perform (soft) local reordering of input sequences. Different from existing neural machine translation (NMT) approaches, NPMT does not use attention-based decoding mechanisms. Instead, it directly outputs phrases in a sequential order and can decode in linear time. Our experiments show that NPMT achieves superior performances on IWSLT 2014 German-English/English-German and IWSLT 2015 English-Vietnamese machine translation tasks compared with strong NMT baselines. We also observe that our method produces meaningful phrases in output languages.
In this paper, we propose Neural Phrase-to-Phrase Machine Translation (NP$^2$MT). Our model uses a phrase attention mechanism to discover relevant input (source) segments that are used by a decoder to generate output (target) phrases. We also design an efficient dynamic programming algorithm to decode segments that allows the model to be trained faster than the existing neural phrase-based machine translation method by Huang et al. (2018). Furthermore, our method can naturally integrate with external phrase dictionaries during decoding. Empirical experiments show that our method achieves comparable performance with the state-of-the art methods on benchmark datasets. However, when the training and testing data are from different distributions or domains, our method performs better.
103 - Junjie Hu , Graham Neubig 2021
Neural machine translation (NMT) is sensitive to domain shift. In this paper, we address this problem in an active learning setting where we can spend a given budget on translating in-domain data, and gradually fine-tune a pre-trained out-of-domain NMT model on the newly translated data. Existing active learning methods for NMT usually select sentences based on uncertainty scores, but these methods require costly translation of full sentences even when only one or two key phrases within the sentence are informative. To address this limitation, we re-examine previous work from the phrase-based machine translation (PBMT) era that selected not full sentences, but rather individual phrases. However, while incorporating these phrases into PBMT systems was relatively simple, it is less trivial for NMT systems, which need to be trained on full sequences to capture larger structural properties of sentences unique to the new domain. To overcome these hurdles, we propose to select both full sentences and individual phrases from unlabelled data in the new domain for routing to human translators. In a German-English translation task, our active learning approach achieves consistent improvements over uncertainty-based sentence selection methods, improving up to 1.2 BLEU score over strong active learning baselines.
Africa has the highest linguistic diversity in the world. On account of the importance of language to communication, and the importance of reliable, powerful and accurate machine translation models in modern inter-cultural communication, there have been (and still are) efforts to create state-of-the-art translation models for the many African languages. However, the low-resources, diacritical and tonal complexities of African languages are major issues facing African NLP today. The FFR is a major step towards creating a robust translation model from Fon, a very low-resource and tonal language, to French, for research and public use. In this paper, we describe our pilot project: the creation of a large growing corpora for Fon-to-French translations and our FFR v1.0 model, trained on this dataset. The dataset and model are made publicly available.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا