Do you want to publish a course? Click here

Neural Machine Translation for Low-Resourced Indian Languages

114   0   0.0 ( 0 )
 Added by Shivansh Rao
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

A large number of significant assets are available online in English, which is frequently translated into native languages to ease the information sharing among local people who are not much familiar with English. However, manual translation is a very tedious, costly, and time-taking process. To this end, machine translation is an effective approach to convert text to a different language without any human involvement. Neural machine translation (NMT) is one of the most proficient translation techniques amongst all existing machine translation systems. In this paper, we have applied NMT on two of the most morphological rich Indian languages, i.e. English-Tamil and English-Malayalam. We proposed a novel NMT model using Multihead self-attention along with pre-trained Byte-Pair-Encoded (BPE) and MultiBPE embeddings to develop an efficient translation system that overcomes the OOV (Out Of Vocabulary) problem for low resourced morphological rich Indian languages which do not have much translation available online. We also collected corpus from different sources, addressed the issues with these publicly available data and refined them for further uses. We used the BLEU score for evaluating our system performance. Experimental results and survey confirmed that our proposed translator (24.34 and 9.78 BLEU score) outperforms Google translator (9.40 and 5.94 BLEU score) respectively.



rate research

Read More

This paper reports the Machine Translation (MT) systems submitted by the IIITT team for the English->Marathi and English->Irish language pairs LoResMT 2021 shared task. The task focuses on getting exceptional translations for rather low-resourced languages like Irish and Marathi. We fine-tune IndicTrans, a pretrained multilingual NMT model for English->Marathi, using external parallel corpus as input for additional training. We have used a pretrained Helsinki-NLP Opus MT English->Irish model for the latter language pair. Our approaches yield relatively promising results on the BLEU metrics. Under the team name IIITT, our systems ranked 1, 1, and 2 in English->Marathi, Irish->English, and English->Irish, respectively.
Building effective neural machine translation (NMT) models for very low-resourced and morphologically rich African indigenous languages is an open challenge. Besides the issue of finding available resources for them, a lot of work is put into preprocessing and tokenization. Recent studies have shown that standard tokenization methods do not always adequately deal with the grammatical, diacritical, and tonal properties of some African languages. That, coupled with the extremely low availability of training samples, hinders the production of reliable NMT models. In this paper, using Fon language as a case study, we revisit standard tokenization methods and introduce Word-Expressions-Based (WEB) tokenization, a human-involved super-words tokenization strategy to create a better representative vocabulary for training. Furthermore, we compare our tokenization strategy to others on the Fon-French and French-Fon translation tasks.
For most language combinations, parallel data is either scarce or simply unavailable. To address this, unsupervised machine translation (UMT) exploits large amounts of monolingual data by using synthetic data generation techniques such as back-translation and noising, while self-supervised NMT (SSNMT) identifies parallel sentences in smaller comparable data and trains on them. To date, the inclusion of UMT data generation techniques in SSNMT has not been investigated. We show that including UMT techniques into SSNMT significantly outperforms SSNMT and UMT on all tested language pairs, with improvements of up to +4.3 BLEU, +50.8 BLEU, +51.5 over SSNMT, statistical UMT and hybrid UMT, respectively, on Afrikaans to English. We further show that the combination of multilingual denoising autoencoding, SSNMT with backtranslation and bilingual finetuning enables us to learn machine translation even for distant language pairs for which only small amounts of monolingual data are available, e.g. yielding BLEU scores of 11.6 (English to Swahili).
Paraphrases, the rewordings of the same semantic meaning, are useful for improving generalization and translation. However, prior works only explore paraphrases at the word or phrase level, not at the sentence or corpus level. Unlike previous works that only explore paraphrases at the word or phrase level, we use different translations of the whole training data that are consistent in structure as paraphrases at the corpus level. We train on parallel paraphrases in multiple languages from various sources. We treat paraphrases as foreign languages, tag source sentences with paraphrase labels, and train on parallel paraphrases in the style of multilingual Neural Machine Translation (NMT). Our multi-paraphrase NMT that trains only on two languages outperforms the multilingual baselines. Adding paraphrases improves the rare word translation and increases entropy and diversity in lexical choice. Adding the source paraphrases boosts performance better than adding the target ones. Combining both the source and the target paraphrases lifts performance further; combining paraphrases with multilingual data helps but has mixed performance. We achieve a BLEU score of 57.2 for French-to-English translation using 24 corpus-level paraphrases of the Bible, which outperforms the multilingual baselines and is +34.7 above the single-source single-target NMT baseline.
Rule-based machine translation is a machine translation paradigm where linguistic knowledge is encoded by an expert in the form of rules that translate text from source to target language. While this approach grants extensive control over the output of the system, the cost of formalising the needed linguistic knowledge is much higher than training a corpus-based system, where a machine learning approach is used to automatically learn to translate from examples. In this paper, we describe different approaches to leverage the information contained in rule-based machine translation systems to improve a corpus-based one, namely, a neural machine translation model, with a focus on a low-resource scenario. Three different kinds of information were used: morphological information, named entities and terminology. In addition to evaluating the general performance of the system, we systematically analysed the performance of the proposed approaches when dealing with the targeted phenomena. Our results suggest that the proposed models have limited ability to learn from external information, and most approaches do not significantly alter the results of the automatic evaluation, but our preliminary qualitative evaluation shows that in certain cases the hypothesis generated by our system exhibit favourable behaviour such as keeping the use of passive voice.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا