No Arabic abstract
Recently, the SARS-CoV-2 variants from the United Kingdom (UK), South Africa, and Brazil have received much attention for their increased infectivity, potentially high virulence, and possible threats to existing vaccines and antibody therapies. The question remains if there are other more infectious variants transmitted around the world. We carry out a large-scale study of 252,874 SARS-CoV-2 genome isolates from patients to identify many other rapidly growing mutations on the spike (S) protein receptor-binding domain (RDB). We reveal that 88 out of 95 significant mutations that were observed more than 10 times strengthen the binding between the RBD and the host angiotensin-converting enzyme 2 (ACE2), indicating the virus evolves toward more infectious variants. In particular, we discover new fast-growing RBD mutations N439K, L452R, S477N, S477R, and N501T that also enhance the RBD and ACE2 binding. We further unveil that mutation N501Y involved in United Kingdom (UK), South Africa, and Brazil variants may moderately weaken the binding between the RBD and many known antibodies, while mutations E484K and K417N found in South Africa and Brazilian variants can potentially disrupt the binding between the RDB and many known antibodies. Among three newly identified fast-growing RBD mutations, L452R, which is now known as part of the California variant B.1.427, and N501T are able to effectively weaken the binding of many known antibodies with the RBD. Finally, we hypothesize that RBD mutations that can simultaneously make SARS-CoV-2 more infectious and disrupt the existing antibodies, called vaccine escape mutations, will pose an imminent threat to the current crop of vaccines. A list of most likely vaccine escape mutations is given, including N501Y, L452R, E484K, N501T, S494P, and K417N.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been mutating since it was first sequenced in early January 2020. The genetic variants have developed into a few distinct clusters with different properties. Since the United States (US) has the highest number of viral infected patients globally, it is essential to understand the US SARS-CoV-2. Using genotyping, sequence-alignment, time-evolution, $k$-means clustering, protein-folding stability, algebraic topology, and network theory, we reveal that the US SARS-CoV-2 has four substrains and five top US SARS-CoV-2 mutations were first detected in China (2 cases), Singapore (2 cases), and the United Kingdom (1 case). The next three top US SARS-CoV-2 mutations were first detected in the US. These eight top mutations belong to two disconnected groups. The first group consisting of 5 concurrent mutations is prevailing, while the other group with three concurrent mutations gradually fades out. Our analysis suggests that female immune systems are more active than those of males in responding to SARS-CoV-2 infections. We identify that one of the top mutations, 27964C$>$T-(S24L) on ORF8, has an unusually strong gender dependence. Based on the analysis of all mutations on the spike protein, we further uncover that three of four US SASR-CoV-2 substrains become more infectious. Our study calls for effective viral control and containing strategies in the US.
In March of this year, COVID-19 was declared a pandemic and it continues to threaten public health. This global health crisis imposes limitations on daily movements, which have deteriorated every sector in our society. Understanding public reactions to the virus and the non-pharmaceutical interventions should be of great help to fight COVID-19 in a strategic way. We aim to provide tangible evidence of the human mobility trends by comparing the day-by-day variations across the U.S. Large-scale public mobility at an aggregated level is observed by leveraging mobile device location data and the measures related to social distancing. Our study captures spatial and temporal heterogeneity as well as the sociodemographic variations regarding the pandemic propagation and the non-pharmaceutical interventions. All mobility metrics adapted capture decreased public movements after the national emergency declaration. The population staying home has increased in all states and becomes more stable after the stay-at-home order with a smaller range of fluctuation. There exists overall mobility heterogeneity between the income or population density groups. The public had been taking active responses, voluntarily staying home more, to the in-state confirmed cases while the stay-at-home orders stabilize the variations. The study suggests that the public mobility trends conform with the government message urging to stay home. We anticipate our data-driven analysis offers integrated perspectives and serves as evidence to raise public awareness and, consequently, reinforce the importance of social distancing while assisting policymakers.
Objectives: We aim to assess the impact of temperature and relative humidity on the transmission of COVID-19 across communities after accounting for community-level factors such as demographics, socioeconomic status, and human mobility status. Design: A retrospective cross-sectional regression analysis via the Fama-MacBeth procedure is adopted. Setting: We use the data for COVID-19 daily symptom-onset cases for 100 Chinese cities and COVID-19 daily confirmed cases for 1,005 U.S. counties. Participants: A total of 69,498 cases in China and 740,843 cases in the U.S. are used for calculating the effective reproductive numbers. Primary outcome measures: Regression analysis of the impact of temperature and relative humidity on the effective reproductive number (R value). Results: Statistically significant negative correlations are found between temperature/relative humidity and the effective reproductive number (R value) in both China and the U.S. Conclusions: Higher temperature and higher relative humidity potentially suppress the transmission of COVID-19. Specifically, an increase in temperature by 1 degree Celsius is associated with a reduction in the R value of COVID-19 by 0.026 (95% CI [-0.0395,-0.0125]) in China and by 0.020 (95% CI [-0.0311, -0.0096]) in the U.S.; an increase in relative humidity by 1% is associated with a reduction in the R value by 0.0076 (95% CI [-0.0108,-0.0045]) in China and by 0.0080 (95% CI [-0.0150,-0.0010]) in the U.S. Therefore, the potential impact of temperature/relative humidity on the effective reproductive number alone is not strong enough to stop the pandemic.
The objective of this study is to examine empirically the impact of good corporate governance on financial performance of United Kingdom non-financial listed firms. Agency theory and stewardship theory serve as the bases of a conceptual model. Five corporate governance mechanisms are examined on two financial performance indicators, return on assets (ROA) and Tobins Q, employing cross-sectional regression methodology. The conclusion drawn from empirical test so performed on 252 firms listed on London Stock Exchange for the year 2014 indicates a positive or a negative relationship, but also sometimes no effect, of corporate governance mechanisms impact on financial performance. The implications are discussed. Thereby, so distinguishing effects due to causes, we present a proof that, when the right corporate governance mechanisms are chosen, the finances of a firm can be improved. The results of this research should have some implication on academia and policy makers thoughts.
The ongoing, fluid nature of the COVID-19 pandemic requires individuals to regularly seek information about best health practices, local community spreading, and public health guidelines. In the absence of a unified response to the pandemic in the United States and clear, consistent directives from federal and local officials, people have used social media to collectively crowdsource COVID-19 elites, a small set of trusted COVID-19 information sources. We take a census of COVID-19 crowdsourced elites in the United States who have received sustained attention on Twitter during the pandemic. Using a mixed methods approach with a panel of Twitter users linked to public U.S. voter registration records, we find that journalists, media outlets, and political accounts have been consistently amplified around COVID-19, while epidemiologists, public health officials, and medical professionals make up only a small portion of all COVID-19 elites on Twitter. We show that COVID-19 elites vary considerably across demographic groups, and that there are notable racial, geographic, and political similarities and disparities between various groups and the demographics of their elites. With this variation in mind, we discuss the potential for using the disproportionate online voice of crowdsourced COVID-19 elites to equitably promote timely public health information and mitigate rampant misinformation.