Do you want to publish a course? Click here

Impact of Temperature and Relative Humidity on the Transmission of COVID-19: A Modeling Study in China and the United States

128   0   0.0 ( 0 )
 Added by Jingyuan Wang
 Publication date 2020
  fields Biology
and research's language is English




Ask ChatGPT about the research

Objectives: We aim to assess the impact of temperature and relative humidity on the transmission of COVID-19 across communities after accounting for community-level factors such as demographics, socioeconomic status, and human mobility status. Design: A retrospective cross-sectional regression analysis via the Fama-MacBeth procedure is adopted. Setting: We use the data for COVID-19 daily symptom-onset cases for 100 Chinese cities and COVID-19 daily confirmed cases for 1,005 U.S. counties. Participants: A total of 69,498 cases in China and 740,843 cases in the U.S. are used for calculating the effective reproductive numbers. Primary outcome measures: Regression analysis of the impact of temperature and relative humidity on the effective reproductive number (R value). Results: Statistically significant negative correlations are found between temperature/relative humidity and the effective reproductive number (R value) in both China and the U.S. Conclusions: Higher temperature and higher relative humidity potentially suppress the transmission of COVID-19. Specifically, an increase in temperature by 1 degree Celsius is associated with a reduction in the R value of COVID-19 by 0.026 (95% CI [-0.0395,-0.0125]) in China and by 0.020 (95% CI [-0.0311, -0.0096]) in the U.S.; an increase in relative humidity by 1% is associated with a reduction in the R value by 0.0076 (95% CI [-0.0108,-0.0045]) in China and by 0.0080 (95% CI [-0.0150,-0.0010]) in the U.S. Therefore, the potential impact of temperature/relative humidity on the effective reproductive number alone is not strong enough to stop the pandemic.



rate research

Read More

This study analyzed the spread and decay durations of the COVID-19 pandemic in different prefectures of Japan. During the pandemic, affordable healthcare was widely available in Japan and the medical system did not suffer a collapse, making accurate comparisons between prefectures possible. For the 16 prefectures included in this study that had daily maximum confirmed cases exceeding ten, the number of daily confirmed cases follow bell-shape or log-normal distribution in most prefectures. A good correlation was observed between the spread and decay durations. However, some exceptions were observed in areas where travelers returned from foreign countries, which were defined as the origins of infection clusters. Excluding these prefectures, the population density was shown to be a major factor affecting the spread and decay patterns, with R2=0.39 (p<0.05) and 0.42 (p<0.05), respectively, approximately corresponding to social distancing. The maximum absolute humidity was found to affect the decay duration normalized by the population density (R2>0.36, p <0.05). Our findings indicate that the estimated pandemic spread duration, based on the multivariate analysis of maximum absolute humidity, ambient temperature, and population density (adjusted R2=0.53, p-value<0.05), could prove useful for intervention planning during potential future pandemics, including a second COVID-19 outbreak.
The outbreak of novel coronavirus-caused pneumonia (COVID-19) in Wuhan has attracted worldwide attention. Here, we propose a generalized SEIR model to analyze this epidemic. Based on the public data of National Health Commission of China from Jan. 20th to Feb. 9th, 2020, we reliably estimate key epidemic parameters and make predictions on the inflection point and possible ending time for 5 different regions. According to optimistic estimation, the epidemics in Beijing and Shanghai will end soon within two weeks, while for most part of China, including the majority of cities in Hubei province, the success of anti-epidemic will be no later than the middle of March. The situation in Wuhan is still very severe, at least based on public data until Feb. 15th. We expect it will end up at the beginning of April. Moreover, by inverse inference, we find the outbreak of COVID-19 in Mainland, Hubei province and Wuhan all can be dated back to the end of December 2019, and the doubling time is around two days at the early stage.
In late-2020, many countries around the world faced another surge in number of confirmed cases of COVID-19, including United Kingdom, Canada, Brazil, United States, etc., which resulted in a large nationwide and even worldwide wave. While there have been indications that precaution fatigue could be a key factor, no scientific evidence has been provided so far. We used a stochastic metapopulation model with a hierarchical structure and fitted the model to the positive cases in the US from the start of outbreak to the end of 2020. We incorporated non-pharmaceutical interventions (NPIs) into this model by assuming that the precaution strength grows with positive cases and studied two types of pandemic fatigue. We found that people in most states and in the whole US respond to the outbreak in a sublinear manner (with exponent k=0.5), while only three states (Massachusetts, New York and New Jersey) have linear reaction (k=1). Case fatigue (decline in peoples vigilance to positive cases) is responsible for 58% of cases, while precaution fatigue (decay of maximal fraction of vigilant group) accounts for 26% cases. If there were no pandemic fatigue (no case fatigue and no precaution fatigue), total positive cases would have reduced by 68% on average. Our study shows that pandemic fatigue is the major cause of the worsening situation of COVID-19 in United States. Reduced vigilance is responsible for most positive cases, and higher mortality rate tends to push local people to react to the outbreak faster and maintain vigilant for longer time.
Recently, the SARS-CoV-2 variants from the United Kingdom (UK), South Africa, and Brazil have received much attention for their increased infectivity, potentially high virulence, and possible threats to existing vaccines and antibody therapies. The question remains if there are other more infectious variants transmitted around the world. We carry out a large-scale study of 252,874 SARS-CoV-2 genome isolates from patients to identify many other rapidly growing mutations on the spike (S) protein receptor-binding domain (RDB). We reveal that 88 out of 95 significant mutations that were observed more than 10 times strengthen the binding between the RBD and the host angiotensin-converting enzyme 2 (ACE2), indicating the virus evolves toward more infectious variants. In particular, we discover new fast-growing RBD mutations N439K, L452R, S477N, S477R, and N501T that also enhance the RBD and ACE2 binding. We further unveil that mutation N501Y involved in United Kingdom (UK), South Africa, and Brazil variants may moderately weaken the binding between the RBD and many known antibodies, while mutations E484K and K417N found in South Africa and Brazilian variants can potentially disrupt the binding between the RDB and many known antibodies. Among three newly identified fast-growing RBD mutations, L452R, which is now known as part of the California variant B.1.427, and N501T are able to effectively weaken the binding of many known antibodies with the RBD. Finally, we hypothesize that RBD mutations that can simultaneously make SARS-CoV-2 more infectious and disrupt the existing antibodies, called vaccine escape mutations, will pose an imminent threat to the current crop of vaccines. A list of most likely vaccine escape mutations is given, including N501Y, L452R, E484K, N501T, S494P, and K417N.
This study investigates the impact of the COVID-19 pandemic on the stock market crash risk in China. For this purpose, we first estimated the conditional skewness of the return distribution from a GARCH with skewness (GARCH-S) model as the proxy for the equity market crash risk of the Shanghai Stock Exchange. We then constructed a fear index for COVID-19 using data from the Baidu Index. Based on the findings, conditional skewness reacts negatively to daily growth in total confirmed cases, indicating that the pandemic increases stock market crash risk. Moreover, the fear sentiment exacerbates such risk, especially with regard to the impact of COVID-19. In other words, when the fear sentiment is high, the stock market crash risk is more strongly affected by the pandemic. Our evidence is robust for the number of daily deaths and global cases.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا