No Arabic abstract
The global quantum internet will require long-lived, telecommunications band photon-matter interfaces manufactured at scale. Preliminary quantum networks based upon photon-matter interfaces which meet a subset of these demands are encouraging efforts to identify new high-performance alternatives. Silicon is an ideal host for commercial-scale solid-state quantum technologies. It is already an advanced platform within the global integrated photonics and microelectronics industries, as well as host to record-setting long-lived spin qubits. Despite the overwhelming potential of the silicon quantum platform, the optical detection of individually addressable photon-spin interfaces in silicon has remained elusive. In this work we produce tens of thousands of individually addressable `$T$ centre photon-spin qubits in integrated silicon photonic structures, and characterize their spin-dependent telecommunications-band optical transitions. These results unlock immediate opportunities to construct silicon-integrated, telecommunications-band quantum information networks.
The silicon-vacancy ($mathrm{SiV}^-$) color center in diamond has attracted attention due to its unique optical properties. It exhibits spectral stability and indistinguishability that facilitate efficient generation of photons capable of demonstrating quantum interference. Here we show high fidelity optical initialization and readout of electronic spin in a single $mathrm{SiV}^-$ center with a spin relaxation time of $T_1=2.4pm0.2$ ms. Coherent population trapping (CPT) is used to demonstrate coherent preparation of dark superposition states with a spin coherence time of $T_2^star=35pm3$ ns. This is fundamentally limited by orbital relaxation, and an understanding of this process opens the way to extend coherences by engineering interactions with phonons. These results establish the $mathrm{SiV}^-$ center as a solid-state spin-photon interface.
Electron spins in silicon quantum dots provide a promising route towards realising the large number of coupled qubits required for a useful quantum processor. At present, the requisite single-shot spin qubit measurements are performed using on-chip charge sensors, capacitively coupled to the quantum dots. However, as the number of qubits is increased, this approach becomes impractical due to the footprint and complexity of the charge sensors, combined with the required proximity to the quantum dots. Alternatively, the spin state can be measured directly by detecting the complex impedance of spin-dependent electron tunnelling between quantum dots. This can be achieved using radio-frequency reflectometry on a single gate electrode defining the quantum dot itself, significantly reducing gate count and architectural complexity, but thus far it has not been possible to achieve single-shot spin readout using this technique. Here, we detect single electron tunnelling in a double quantum dot and demonstrate that gate-based sensing can be used to read out the electron spin state in a single shot, with an average readout fidelity of 73%. The result demonstrates a key step towards the readout of many spin qubits in parallel, using a compact gate design that will be needed for a large-scale semiconductor quantum processor.
The Stark shift of the hyperfine coupling constant is investigated for a P donor in Si far below the ionization regime in the presence of interfaces using Tight-binding and Band Minima Basis approaches and compared to the recent precision measurements. The TB electronic structure calculations included over 3 million atoms. In contrast to previous effective mass based results, the quadratic Stark coefficient obtained from both theories agrees closely with the experiments. This work represents the most sensitive and precise comparison between theory and experiment for single donor spin control. It is also shown that there is a significant linear Stark effect for an impurity near the interface, whereas, far from the interface, the quadratic Stark effect dominates. Such precise control of single donor spin states is required particularly in quantum computing applications of single donor electronics, which forms the driving motivation of this work.
Coherent population trapping is demonstrated in single nitrogen-vacancy centers in diamond under optical excitation. For sufficient excitation power, the fluorescence intensity drops almost to the background level when the laser modulation frequency matches the 2.88 GHz splitting of the ground states. The results are well described theoretically by a four-level model, allowing the relative transition strengths to be determined for individual centers. The results show that all-optical control of single spins is possible in diamond.
Spin defects in silicon carbide have exceptional electron spin coherence with a near-infrared spin-photon interface in a material amenable to modern semiconductor fabrication. Leveraging these advantages, we successfully integrate highly coherent single neutral divacancy spins in commercially available p-i-n structures and fabricate diodes to modulate the local electrical environment of the defects. These devices enable deterministic charge state control and broad Stark shift tuning exceeding 850 GHz. Surprisingly, we show that charge depletion results in a narrowing of the optical linewidths by over 50 fold, approaching the lifetime limit. These results demonstrate a method for mitigating the ubiquitous problem of spectral diffusion in solid-state emitters by engineering the electrical environment while utilizing classical semiconductor devices to control scalable spin-based quantum systems.