No Arabic abstract
This paper is a continuation of our article (European J. Math., https://doi.org/10.1007/s40879-020-00419-8). The notion of a poor complex compact manifold was introduced there and the group $Aut(X)$ for a $P^1$-bundle over such a manifold was proven to be very Jordan. We call a group $G$ very Jordan if it contains a normal abelian subgroup $G_0$ such that the orders of finite subgroups of the quotient $G/G_0$ are bounded by a constant depending on $G$ only. In this paper we provide explicit examples of infinite families of poor manifolds of any complex dimension, namely simple tori of algebraic dimension zero. Then we consider a non-trivial holomorphic $P^1$-bundle $(X,p,Y)$ over a non-uniruled complex compact Kaehler manifold $Y$. We prove that $Aut(X)$ is very Jordan provided some additional conditions on the set of sections of $p$ are met. Applications to $P^1$-bundles over non-algebraic complex tori are given.
We show that a compact Kaehler manifold X is a complex torus if both the continuous part and discrete part of some automorphism group G of X are infinite groups, unless X is bimeromorphic to a non-trivial G-equivariant fibration. Some applications to dynamics are given.
In this paper, we study questions of Demailly and Matsumura on the asymptotic behavior of dimensions of cohomology groups for high tensor powers of (nef) pseudo-effective line bundles over non-necessarily projective algebraic manifolds. By generalizing Sius $partialoverline{partial}$-formula and Berndtssons eigenvalue estimate of $overline{partial}$-Laplacian and combining Bonaveros technique, we obtain the following result: given a holomorphic pseudo-effective line bundle $(L, h_L)$ on a compact Hermitian manifold $(X,omega)$, if $h_L$ is a singular metric with algebraic singularities, then $dim H^{q}(X,L^kotimes Eotimes mathcal{I}(h_L^{k}))leq Ck^{n-q}$ for $k$ large, with $E$ an arbitrary holomorphic vector bundle. As applications, we obtain partial solutions to the questions of Demailly and Matsumura.
We use a theorem of Chow (1949) on line-preserving bijections of Grassmannians to determine the automorphism group of Grassmann codes. Further, we analyze the automorphisms of the big cell of a Grassmannian and then use it to settle an open question of Beelen et al. (2010) concerning the permutation automorphism groups of affine Grassmann codes. Finally, we prove an analogue of Chows theorem for the case of Schubert divisors in Grassmannians and then use it to determine the automorphism group of linear codes associated to such Schubert divisors. In the course of this work, we also give an alternative short proof of MacWilliams theorem concerning the equivalence of linear codes and a characterization of maximal linear subspaces of Schubert divisors in Grassmannians.
The moduli space of solutions to Nahms equations of rank (k,k+j) on the circle, and hence, of SU(2) calorons of charge (k,j), is shown to be equivalent to the moduli of holomorphic rank 2 bundles on P^1xP^1 trivialized at infinity with c_2=k and equipped with a flag of degree j along P^1x{0}. An explicit matrix description of these spaces is given by a monad construction
We study the groups of biholomorphic and bimeromorphic automorphisms of conic bundles over certain compact complex manifolds of algebraic dimension zero.