Do you want to publish a course? Click here

Asymptotic estimate of cohomology groups valued in pseudo-effective line bundles

67   0   0.0 ( 0 )
 Added by Zhiwei Wang
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we study questions of Demailly and Matsumura on the asymptotic behavior of dimensions of cohomology groups for high tensor powers of (nef) pseudo-effective line bundles over non-necessarily projective algebraic manifolds. By generalizing Sius $partialoverline{partial}$-formula and Berndtssons eigenvalue estimate of $overline{partial}$-Laplacian and combining Bonaveros technique, we obtain the following result: given a holomorphic pseudo-effective line bundle $(L, h_L)$ on a compact Hermitian manifold $(X,omega)$, if $h_L$ is a singular metric with algebraic singularities, then $dim H^{q}(X,L^kotimes Eotimes mathcal{I}(h_L^{k}))leq Ck^{n-q}$ for $k$ large, with $E$ an arbitrary holomorphic vector bundle. As applications, we obtain partial solutions to the questions of Demailly and Matsumura.



rate research

Read More

93 - Xu Wang 2021
We shall give an explicit estimate of the lower bound of the Bergman kernel associated to a positive line bundle. In the compact Riemann surface case, our result can be seen as an explicit version of Tians partial $C^0$-estimate.
This paper is a continuation of our article (European J. Math., https://doi.org/10.1007/s40879-020-00419-8). The notion of a poor complex compact manifold was introduced there and the group $Aut(X)$ for a $P^1$-bundle over such a manifold was proven to be very Jordan. We call a group $G$ very Jordan if it contains a normal abelian subgroup $G_0$ such that the orders of finite subgroups of the quotient $G/G_0$ are bounded by a constant depending on $G$ only. In this paper we provide explicit examples of infinite families of poor manifolds of any complex dimension, namely simple tori of algebraic dimension zero. Then we consider a non-trivial holomorphic $P^1$-bundle $(X,p,Y)$ over a non-uniruled complex compact Kaehler manifold $Y$. We prove that $Aut(X)$ is very Jordan provided some additional conditions on the set of sections of $p$ are met. Applications to $P^1$-bundles over non-algebraic complex tori are given.
Let $X$ be a compact connected CR manifold with a transversal CR $S^1$-action of dimension $2n-1$, which is only assumed to be weakly pseudoconvex. Let $Box_b$ be the $overline{partial}_b$-Laplacian. Eigenvalue estimate of $Box_b$ is a fundamental issue both in CR geometry and analysis. In this paper, we are able to obtain a sharp estimate of the number of eigenvalues smaller than or equal to $lambda$ of $Box_b$ acting on the $m$-th Fourier components of smooth $(n-1,q)$-forms on $X$, where $min mathbb{Z}_+$ and $q=0,1,cdots, n-1$. Here the sharp means the growth order with respect to $m$ is sharp. In particular, when $lambda=0$, we obtain the asymptotic estimate of the growth for $m$-th Fourier components $H^{n-1,q}_{b,m}(X)$ of $H^{n-1,q}_b(X)$ as $m rightarrow +infty$. Furthermore, we establish a Serre type duality theorem for Fourier components of Kohn-Rossi cohomology which is of independent interest. As a byproduct, the asymptotic growth of the dimensions of the Fourier components $H^{0,q}_{b,-m}(X)$ for $ min mathbb{Z}_+$ is established. Compared with previous results in this field, the estimate for $lambda=0$ already improves very much the corresponding estimate of Hsiao and Li . We also give appilcations of our main results, including Morse type inequalities, asymptotic Riemann-Roch type theorem, Grauert-Riemenscheider type criterion, and an orbifold version of our main results which answers an open problem.
We introduce several families of filtrations on the space of vector bundles over a smooth projective variety. These filtrations are defined using the large k asymptotics of the kernel of the Dolbeault Dirac operator on a bundle twisted by the kth power of an ample line bundle. The filtrations measure the failure of the bundle to admit a holomorphic structure. We study compatibility under the Chern isomorphism of these filtrations with the Hodge filtration on cohomology.
175 - Klaus Altmann , David Ploog 2019
There is a standard method to calculate the cohomology of torus-invariant sheaves $L$ on a toric variety via the simplicial cohomology of associated subsets $V(L)$ of the space $N_{mathbb R}$ of 1-parameter subgroups of the torus. For a line bundle $L$ represented by a formal difference $Delta^+-Delta^-$ of polyhedra in the character space $M_{mathbb R}$, [ABKW18] contains a simpler formula for the cohomology of $L$, replacing $V(L)$ by the set-theoretic difference $Delta^- setminus Delta^+$. Here, we provide a short and direct proof of this formula.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا