Do you want to publish a course? Click here

A characterization of compact complex tori via automorphism groups

151   0   0.0 ( 0 )
 Added by Baohua Fu
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We show that a compact Kaehler manifold X is a complex torus if both the continuous part and discrete part of some automorphism group G of X are infinite groups, unless X is bimeromorphic to a non-trivial G-equivariant fibration. Some applications to dynamics are given.



rate research

Read More

This paper is a continuation of our article (European J. Math., https://doi.org/10.1007/s40879-020-00419-8). The notion of a poor complex compact manifold was introduced there and the group $Aut(X)$ for a $P^1$-bundle over such a manifold was proven to be very Jordan. We call a group $G$ very Jordan if it contains a normal abelian subgroup $G_0$ such that the orders of finite subgroups of the quotient $G/G_0$ are bounded by a constant depending on $G$ only. In this paper we provide explicit examples of infinite families of poor manifolds of any complex dimension, namely simple tori of algebraic dimension zero. Then we consider a non-trivial holomorphic $P^1$-bundle $(X,p,Y)$ over a non-uniruled complex compact Kaehler manifold $Y$. We prove that $Aut(X)$ is very Jordan provided some additional conditions on the set of sections of $p$ are met. Applications to $P^1$-bundles over non-algebraic complex tori are given.
211 - Alvaro Liendo , Andriy Regeta , 2018
In this paper we prove that if two normal affine surfaces $S$ and $S$ have isomorphic automophism groups, then every connected algebraic group acting regularly and faithfully on $S$ acts also regularly and faithfully on $S$. Moreover, if $S$ is non-toric, we show that the dynamical type of a 1-torus action is preserved in presence of an additive group action. We also show that complex affine toric surfaces are determined by the abstract group structure of their regular automorphism groups in the category of complex normal affine surfaces using properties of the Cremona group. As a generalization to arbitrary dimensions, we show that complex affine toric varieties, with the exception of the algebraic torus, are uniquely determined in the category of complex affine normal varieties by their automorphism groups seen as ind-groups.
152 - Yuri G. Zarhin 2019
We prove that an analogue of Jordans theorem on finite subgroups of general linear groups does not hold for the group of bimeromorphic automorphisms of a product of the complex projective line and a complex torus of positive algebraic dimension.
We prove several theorems relating amenability of groups in various categories (discrete, definable, topological, automorphism group) to model-theoretic invariants (quotients by connected components, Lascar Galois group, G-compactness, ...). For example, if $M$ is a countable, $omega$-categorical structure and $Aut(M)$ is amenable, as a topological group, then the Lascar Galois group $Gal_{L}(T)$ of the theory $T$ of $M$ is compact, Hausdorff (also over any finite set of parameters), that is $T$ is G-compact. An essentially special case is that if $Aut(M)$ is extremely amenable, then $Gal_{L}(T)$ is trivial, so, by a theorem of Lascar, the theory $T$ can be recovered from its category $Mod(T)$ of models. On the side of definable groups, we prove for example that if $G$ is definable in a model $M$, and $G$ is definably amenable, then the connected components ${G^{*}}^{00}_{M}$ and ${G^{*}}^{000}_{M}$ coincide, answering positively a question from an earlier paper of the authors. We also take the opportunity to further develop the model-theoretic approach to topological dynamics, obtaining for example some new invariants for topological groups, as well as allowing a uniform approach to the theorems above and the various categories.
Let $R$ be a commutative ring with identity. We define a graph $Gamma_{aut}(R)$ on $ R$, with vertices elements of $R$, such that any two distinct vertices $x, y$ are adjacent if and only if there exists $sigma in aut$ such that $sigma(x)=y$. The idea is to apply graph theory to study orbit spaces of rings under automorphisms. In this article, we define the notion of a ring of type $n$ for $ngeq 0$ and characterize all rings of type zero. We also characterize local rings $(R,M) $ in which either the subset of units ($ eq 1 $) is connected or the subset $M- {0}$ is connected in $Gamma_{aut}(R)$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا