Do you want to publish a course? Click here

Fast and Accurate Model Scaling

111   0   0.0 ( 0 )
 Added by Piotr Doll\\'ar
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this work we analyze strategies for convolutional neural network scaling; that is, the process of scaling a base convolutional network to endow it with greater computational complexity and consequently representational power. Example scaling strategies may include increasing model width, depth, resolution, etc. While various scaling strategies exist, their tradeoffs are not fully understood. Existing analysis typically focuses on the interplay of accuracy and flops (floating point operations). Yet, as we demonstrate, various scaling strategies affect model parameters, activations, and consequently actual runtime quite differently. In our experiments we show the surprising result that numerous scaling strategies yield networks with similar accuracy but with widely varying properties. This leads us to propose a simple fast compound scaling strategy that encourages primarily scaling model width, while scaling depth and resolution to a lesser extent. Unlike currently popular scaling strategies, which result in about $O(s)$ increase in model activation w.r.t. scaling flops by a factor of $s$, the proposed fast compound scaling results in close to $O(sqrt{s})$ increase in activations, while achieving excellent accuracy. This leads to comparable speedups on modern memory-limited hardware (e.g., GPU, TPU). More generally, we hope this work provides a framework for analyzing and selecting scaling strategies under various computational constraints.



rate research

Read More

This paper presents a general framework to build fast and accurate algorithms for video enhancement tasks such as super-resolution, deblurring, and denoising. Essential to our framework is the realization that the accuracy, rather than the density, of pixel flows is what is required for high-quality video enhancement. Most of prior works take the opposite approach: they estimate dense (per-pixel)-but generally less robust-flows, mostly using computationally costly algorithms. Instead, we propose a lightweight flow estimation algorithm; it fuses the sparse point cloud data and (even sparser and less reliable) IMU data available in modern autonomous agents to estimate the flow information. Building on top of the flow estimation, we demonstrate a general framework that integrates the flows in a plug-and-play fashion with different task-specific layers. Algorithms built in our framework achieve 1.78x - 187.41x speedup while providing a 0.42 dB - 6.70 dB quality improvement over competing methods.
The shared response model provides a simple but effective framework to analyse fMRI data of subjects exposed to naturalistic stimuli. However when the number of subjects or runs is large, fitting the model requires a large amount of memory and computational power, which limits its use in practice. In this work, we introduce the FastSRM algorithm that relies on an intermediate atlas-based representation. It provides considerable speed-up in time and memory usage, hence it allows easy and fast large-scale analysis of naturalistic-stimulus fMRI data. Using four different datasets, we show that our method matches the performance of the original SRM algorithm while being about 5x faster and 20x to 40x more memory efficient. Based on this contribution, we use FastSRM to predict age from movie watching data on the CamCAN sample. Besides delivering accurate predictions (mean absolute error of 7.5 years), FastSRM extracts topographic patterns that are predictive of age, demonstrating that brain activity during free perception reflects age.
Online video object segmentation is a challenging task as it entails to process the image sequence timely and accurately. To segment a target object through the video, numerous CNN-based methods have been developed by heavily finetuning on the object mask in the first frame, which is time-consuming for online applications. In this paper, we propose a fast and accurate video object segmentation algorithm that can immediately start the segmentation process once receiving the images. We first utilize a part-based tracking method to deal with challenging factors such as large deformation, occlusion, and cluttered background. Based on the tracked bounding boxes of parts, we construct a region-of-interest segmentation network to generate part masks. Finally, a similarity-based scoring function is adopted to refine these object parts by comparing them to the visual information in the first frame. Our method performs favorably against state-of-the-art algorithms in accuracy on the DAVIS benchmark dataset, while achieving much faster runtime performance.
In this paper, we propose an effective method for fast and accurate scene parsing called Bidirectional Alignment Network (BiAlignNet). Previously, one representative work BiSeNet~cite{bisenet} uses two different paths (Context Path and Spatial Path) to achieve balanced learning of semantics and details, respectively. However, the relationship between the two paths is not well explored. We argue that both paths can benefit each other in a complementary way. Motivated by this, we propose a novel network by aligning two-path information into each other through a learned flow field. To avoid the noise and semantic gaps, we introduce a Gated Flow Alignment Module to align both features in a bidirectional way. Moreover, to make the Spatial Path learn more detailed information, we present an edge-guided hard pixel mining loss to supervise the aligned learning process. Our method achieves 80.1% and 78.5% mIoU in validation and test set of Cityscapes while running at 30 FPS with full resolution inputs. Code and models will be available at url{https://github.com/jojacola/BiAlignNet}.
150 - Chaorui Deng , Qi Wu , Guanghui Xu 2019
Visual Grounding (VG) aims to locate the most relevant region in an image, based on a flexible natural language query but not a pre-defined label, thus it can be a more useful technique than object detection in practice. Most state-of-the-art methods in VG operate in a two-stage manner, wherein the first stage an object detector is adopted to generate a set of object proposals from the input image and the second stage is simply formulated as a cross-modal matching problem that finds the best match between the language query and all region proposals. This is rather inefficient because there might be hundreds of proposals produced in the first stage that need to be compared in the second stage, not to mention this strategy performs inaccurately. In this paper, we propose an simple, intuitive and much more elegant one-stage detection based method that joints the region proposal and matching stage as a single detection network. The detection is conditioned on the input query with a stack of novel Relation-to-Attention modules that transform the image-to-query relationship to an relation map, which is used to predict the bounding box directly without proposing large numbers of useless region proposals. During the inference, our approach is about 20x ~ 30x faster than previous methods and, remarkably, it achieves 18% ~ 41% absolute performance improvement on top of the state-of-the-art results on several benchmark datasets. We release our code and all the pre-trained models at https://github.com/openblack/rvg.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا