Do you want to publish a course? Click here

Wide Aspect Ratio Matching for Robust Face Detection

106   0   0.0 ( 0 )
 Added by Shi Luo
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recently, anchor-based methods have achieved great progress in face detection. Once anchor design and anchor matching strategy determined, plenty of positive anchors will be sampled. However, faces with extreme aspect ratio always fail to be sampled according to standard anchor matching strategy. In fact, the max IoUs between anchors and extreme aspect ratio faces are still lower than fixed sampling threshold. In this paper, we firstly explore the factors that affect the max IoU of each face in theory. Then, anchor matching simulation is performed to evaluate the sampling range of face aspect ratio. Besides, we propose a Wide Aspect Ratio Matching (WARM) strategy to collect more representative positive anchors from ground-truth faces across a wide range of aspect ratio. Finally, we present a novel feature enhancement module, named Receptive Field Diversity (RFD) module, to provide diverse receptive field corresponding to different aspect ratios. Extensive experiments show that our method can help detectors better capture extreme aspect ratio faces and achieve promising detection performance on challenging face detection benchmarks, including WIDER FACE and FDDB datasets.



rate research

Read More

Currently, face detection approaches focus on facial information by varying specific parameters including pose, occlusion, lighting, background, race, and gender. These studies only utilized the information obtained from low dynamic range images, however, face detection in wide dynamic range (WDR) scenes has received little attention. To our knowledge, there is no publicly available WDR database for face detection research. To facilitate and support future face detection research in the WDR field, we propose the first WDR database for face detection, called WDR FACE, which contains a total of 398 16-bit megapixel grayscale wide dynamic range images collected from 29 subjects. These WDR images (WDRIs) were taken in eight specific WDR scenes. The dynamic range of 90% images surpasses 60,000:1, and that of 70% images exceeds 65,000:1. Furthermore, we show the effect of different face detection procedures on the WDRIs in our database. This is done with 25 different tone mapping operators and five different face detectors. We provide preliminary experimental results of face detection on this unique WDR database.
Existing methods for stereo work on narrow baseline image pairs giving limited performance between wide baseline views. This paper proposes a framework to learn and estimate dense stereo for people from wide baseline image pairs. A synthetic people stereo patch dataset (S2P2) is introduced to learn wide baseline dense stereo matching for people. The proposed framework not only learns human specific features from synthetic data but also exploits pooling layer and data augmentation to adapt to real data. The network learns from the human specific stereo patches from the proposed dataset for wide-baseline stereo estimation. In addition to patch match learning, a stereo constraint is introduced in the framework to solve wide baseline stereo reconstruction of humans. Quantitative and qualitative performance evaluation against state-of-the-art methods of proposed method demonstrates improved wide baseline stereo reconstruction on challenging datasets. We show that it is possible to learn stereo matching from synthetic people dataset and improve performance on real datasets for stereo reconstruction of people from narrow and wide baseline stereo data.
Although current deep learning-based face forgery detectors achieve impressive performance in constrained scenarios, they are vulnerable to samples created by unseen manipulation methods. Some recent works show improvements in generalisation but rely on cues that are easily corrupted by common post-processing operations such as compression. In this paper, we propose LipForensics, a detection approach capable of both generalising to novel manipulations and withstanding various distortions. LipForensics targets high-level semantic irregularities in mouth movements, which are common in many generated videos. It consists in first pretraining a spatio-temporal network to perform visual speech recognition (lipreading), thus learning rich internal representations related to natural mouth motion. A temporal network is subsequently finetuned on fixed mouth embeddings of real and forged data in order to detect fake videos based on mouth movements without overfitting to low-level, manipulation-specific artefacts. Extensive experiments show that this simple approach significantly surpasses the state-of-the-art in terms of generalisation to unseen manipulations and robustness to perturbations, as well as shed light on the factors responsible for its performance. Code is available on GitHub.
Over the past several years, in order to solve the problem of malicious abuse of facial manipulation technology, face manipulation detection technology has obtained considerable attention and achieved remarkable progress. However, most existing methods have very impoverished generalization ability and robustness. In this paper, we propose a novel method for face manipulation detection, which can improve the generalization ability and robustness by bag-of-local-feature. Specifically, we extend Transformers using bag-of-feature approach to encode inter-patch relationships, allowing it to learn local forgery features without any explicit supervision. Extensive experiments demonstrate that our method can outperform competing state-of-the-art methods on FaceForensics++, Celeb-DF and DeeperForensics-1.0 datasets.
272 - Faen Zhang , Xinyu Fan , Guo Ai 2019
Face detection has witnessed significant progress due to the advances of deep convolutional neural networks (CNNs). Its central issue in recent years is how to improve the detection performance of tiny faces. To this end, many recent works propose some specific strategies, redesign the architecture and introduce new loss functions for tiny object detection. In this report, we start from the popular one-stage RetinaNet approach and apply some recent tricks to obtain a high performance face detector. Specifically, we apply the Intersection over Union (IoU) loss function for regression, employ the two-step classification and regression for detection, revisit the data augmentation based on data-anchor-sampling for training, utilize the max-out operation for classification and use the multi-scale testing strategy for inference. As a consequence, the proposed face detection method achieves state-of-the-art performance on the most popular and challenging face detection benchmark WIDER FACE dataset.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا