Do you want to publish a course? Click here

WDR FACE: The First Database for Studying Face Detection in Wide Dynamic Range

99   0   0.0 ( 0 )
 Added by Ziyi Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Currently, face detection approaches focus on facial information by varying specific parameters including pose, occlusion, lighting, background, race, and gender. These studies only utilized the information obtained from low dynamic range images, however, face detection in wide dynamic range (WDR) scenes has received little attention. To our knowledge, there is no publicly available WDR database for face detection research. To facilitate and support future face detection research in the WDR field, we propose the first WDR database for face detection, called WDR FACE, which contains a total of 398 16-bit megapixel grayscale wide dynamic range images collected from 29 subjects. These WDR images (WDRIs) were taken in eight specific WDR scenes. The dynamic range of 90% images surpasses 60,000:1, and that of 70% images exceeds 65,000:1. Furthermore, we show the effect of different face detection procedures on the WDRIs in our database. This is done with 25 different tone mapping operators and five different face detectors. We provide preliminary experimental results of face detection on this unique WDR database.



rate research

Read More

Recently, anchor-based methods have achieved great progress in face detection. Once anchor design and anchor matching strategy determined, plenty of positive anchors will be sampled. However, faces with extreme aspect ratio always fail to be sampled according to standard anchor matching strategy. In fact, the max IoUs between anchors and extreme aspect ratio faces are still lower than fixed sampling threshold. In this paper, we firstly explore the factors that affect the max IoU of each face in theory. Then, anchor matching simulation is performed to evaluate the sampling range of face aspect ratio. Besides, we propose a Wide Aspect Ratio Matching (WARM) strategy to collect more representative positive anchors from ground-truth faces across a wide range of aspect ratio. Finally, we present a novel feature enhancement module, named Receptive Field Diversity (RFD) module, to provide diverse receptive field corresponding to different aspect ratios. Extensive experiments show that our method can help detectors better capture extreme aspect ratio faces and achieve promising detection performance on challenging face detection benchmarks, including WIDER FACE and FDDB datasets.
Face recognition is a popular and well-studied area with wide applications in our society. However, racial bias had been proven to be inherent in most State Of The Art (SOTA) face recognition systems. Many investigative studies on face recognition algorithms have reported higher false positive rates of African subjects cohorts than the other cohorts. Lack of large-scale African face image databases in public domain is one of the main restrictions in studying the racial bias problem of face recognition. To this end, we collect a face image database namely CASIA-Face-Africa which contains 38,546 images of 1,183 African subjects. Multi-spectral cameras are utilized to capture the face images under various illumination settings. Demographic attributes and facial expressions of the subjects are also carefully recorded. For landmark detection, each face image in the database is manually labeled with 68 facial keypoints. A group of evaluation protocols are constructed according to different applications, tasks, partitions and scenarios. The performances of SOTA face recognition algorithms without re-training are reported as baselines. The proposed database along with its face landmark annotations, evaluation protocols and preliminary results form a good benchmark to study the essential aspects of face biometrics for African subjects, especially face image preprocessing, face feature analysis and matching, facial expression recognition, sex/age estimation, ethnic classification, face image generation, etc. The database can be downloaded from our http://www.cripacsir.cn/dataset/
In this paper, we introduce a new large-scale face database from KIST, denoted as K-FACE, and describe a novel capturing device specifically designed to obtain the data. The K-FACE database contains more than 1 million high-quality images of 1,000 subjects selected by considering the ratio of gender and age groups. It includes a variety of attributes, including 27 poses, 35 lighting conditions, three expressions, and occlusions by the combination of five types of accessories. As the K-FACE database is systematically constructed through a hemispherical capturing system with elaborate lighting control and multiple cameras, it is possible to accurately analyze the effects of factors that cause performance degradation, such as poses, lighting changes, and accessories. We consider not only the balance of external environmental factors, such as pose and lighting, but also the balance of personal characteristics such as gender and age group. The gender ratio is the same, while the age groups of subjects are uniformly distributed from the 20s to 50s for both genders. The K-FACE database can be extensively utilized in various vision tasks, such as face recognition, face frontalization, illumination normalization, face age estimation, and three-dimensional face model generation. We expect systematic diversity and uniformity of the K-FACE database to promote these research fields.
Face identification/recognition has significantly advanced over the past years. However, most of the proposed approaches rely on static RGB frames and on neutral facial expressions. This has two disadvantages. First, important facial shape cues are ignored. Second, facial deformations due to expressions can have an impact on the performance of such a method. In this paper, we propose a novel framework for dynamic 3D face identification/recognition based on facial keypoints. Each dynamic sequence of facial expressions is represented as a spatio-temporal graph, which is constructed using 3D facial landmarks. Each graph node contains local shape and texture features that are extracted from its neighborhood. For the classification/identification of faces, a Spatio-temporal Graph Convolutional Network (ST-GCN) is used. Finally, we evaluate our approach on a challenging dynamic 3D facial expression dataset.
Face detection in low light scenarios is challenging but vital to many practical applications, e.g., surveillance video, autonomous driving at night. Most existing face detectors heavily rely on extensive annotations, while collecting data is time-consuming and laborious. To reduce the burden of building new datasets for low light conditions, we make full use of existing normal light data and explore how to adapt face detectors from normal light to low light. The challenge of this task is that the gap between normal and low light is too huge and complex for both pixel-level and object-level. Therefore, most existing low-light enhancement and adaptation methods do not achieve desirable performance. To address the issue, we propose a joint High-Low Adaptation (HLA) framework. Through a bidirectional low-level adaptation and multi-task high-level adaptation scheme, our HLA-Face outperforms state-of-the-art methods even without using dark face labels for training. Our project is publicly available at https://daooshee.github.io/HLA-Face-Website/
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا