No Arabic abstract
Over the past several years, in order to solve the problem of malicious abuse of facial manipulation technology, face manipulation detection technology has obtained considerable attention and achieved remarkable progress. However, most existing methods have very impoverished generalization ability and robustness. In this paper, we propose a novel method for face manipulation detection, which can improve the generalization ability and robustness by bag-of-local-feature. Specifically, we extend Transformers using bag-of-feature approach to encode inter-patch relationships, allowing it to learn local forgery features without any explicit supervision. Extensive experiments demonstrate that our method can outperform competing state-of-the-art methods on FaceForensics++, Celeb-DF and DeeperForensics-1.0 datasets.
Stereo matching has recently witnessed remarkable progress using Deep Neural Networks (DNNs). But, how robust are they? Although it has been well-known that DNNs often suffer from adversarial vulnerability with a catastrophic drop in performance, the situation is even worse in stereo matching. This paper first shows that a type of weak white-box attacks can fail state-of-the-art methods. The attack is learned by a proposed stereo-constrained projected gradient descent (PGD) method in stereo matching. This observation raises serious concerns for the deployment of DNN-based stereo matching. Parallel to the adversarial vulnerability, DNN-based stereo matching is typically trained under the so-called simulation to reality pipeline, and thus domain generalizability is an important problem. This paper proposes to rethink the learnable DNN-based feature backbone towards adversarially-robust and domain generalizable stereo matching, either by completely removing it or by applying it only to the left reference image. It computes the matching cost volume using the classic multi-scale census transform (i.e., local binary pattern) of the raw input stereo images, followed by a stacked Hourglass head sub-network solving the matching problem. In experiments, the proposed method is tested in the SceneFlow dataset and the KITTI2015 benchmark. It significantly improves the adversarial robustness, while retaining accuracy performance comparable to state-of-the-art methods. It also shows better generalizability from simulation (SceneFlow) to real (KITTI) datasets when no fine-tuning is used.
With the proliferation of face image manipulation (FIM) techniques such as Face2Face and Deepfake, more fake face images are spreading over the internet, which brings serious challenges to public confidence. Face image forgery detection has made considerable progresses in exposing specific FIM, but it is still in scarcity of a robust fake face detector to expose face image forgeries under complex scenarios such as with further compression, blurring, scaling, etc. Due to the relatively fixed structure, convolutional neural network (CNN) tends to learn image content representations. However, CNN should learn subtle manipulation traces for image forensics tasks. Thus, we propose an adaptive manipulation traces extraction network (AMTEN), which serves as pre-processing to suppress image content and highlight manipulation traces. AMTEN exploits an adaptive convolution layer to predict manipulation traces in the image, which are reused in subsequent layers to maximize manipulation artifacts by updating weights during the back-propagation pass. A fake face detector, namely AMTENnet, is constructed by integrating AMTEN with CNN. Experimental results prove that the proposed AMTEN achieves desirable pre-processing. When detecting fake face images generated by various FIM techniques, AMTENnet achieves an average accuracy up to 98.52%, which outperforms the state-of-the-art works. When detecting face images with unknown post-processing operations, the detector also achieves an average accuracy of 95.17%.
Recent studies have shown remarkable success in face manipulation task with the advance of GANs and VAEs paradigms, but the outputs are sometimes limited to low-resolution and lack of diversity. In this work, we propose Additive Focal Variational Auto-encoder (AF-VAE), a novel approach that can arbitrarily manipulate high-resolution face images using a simple yet effective model and only weak supervision of reconstruction and KL divergence losses. First, a novel additive Gaussian Mixture assumption is introduced with an unsupervised clustering mechanism in the structural latent space, which endows better disentanglement and boosts multi-modal representation with external memory. Second, to improve the perceptual quality of synthesized results, two simple strategies in architecture design are further tailored and discussed on the behavior of Human Visual System (HVS) for the first time, allowing for fine control over the model complexity and sample quality. Human opinion studies and new state-of-the-art Inception Score (IS) / Frechet Inception Distance (FID) demonstrate the superiority of our approach over existing algorithms, advancing both the fidelity and extremity of face manipulation task.
Detecting manipulated facial images and videos is an increasingly important topic in digital media forensics. As advanced face synthesis and manipulation methods are made available, new types of fake face representations are being created which have raised significant concerns for their use in social media. Hence, it is crucial to detect manipulated face images and localize manipulated regions. Instead of simply using multi-task learning to simultaneously detect manipulated images and predict the manipulated mask (regions), we propose to utilize an attention mechanism to process and improve the feature maps for the classification task. The learned attention maps highlight the informative regions to further improve the binary classification (genuine face v. fake face), and also visualize the manipulated regions. To enable our study of manipulated face detection and localization, we collect a large-scale database that contains numerous types of facial forgeries. With this dataset, we perform a thorough analysis of data-driven fake face detection. We show that the use of an attention mechanism improves facial forgery detection and manipulated region localization.
Accurate face detection and facial landmark localization are crucial to any face recognition system. We present a series of three single-stage RCNNs with different sized backbones (MobileNetV2-25, MobileNetV2-100, and ResNet101) and a six-layer feature pyramid trained exclusively on the WIDER FACE dataset. We compare the face detection and landmark accuracies using eight context module architectures, four proposed by previous research and four modifi