Do you want to publish a course? Click here

Entropy-Guided Control Improvisation

252   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

High level declarative constraints provide a powerful (and popular) way to define and construct control policies; however, most synthesis algorithms do not support specifying the degree of randomness (unpredictability) of the resulting controller. In many contexts, e.g., patrolling, testing, behavior prediction,and planning on idealized models, predictable or biased controllers are undesirable. To address these concerns, we introduce the emph{Entropic Reactive Control Improvisation} (ERCI) framework and algorithm which supports synthesizing control policies for stochastic games that are declaratively specified by (i) a emph{hard constraint} specifying what must occur, (ii) a emph{soft constraint} specifying what typically occurs, and (iii) a emph{randomization constraint} specifying the unpredictability and variety of the controller, as quantified using causal entropy. This framework, extends the state of the art by supporting arbitrary combinations of adversarial and probabilistic uncertainty in the environment. ERCI enables a flexible modeling formalism which we argue, theoretically and empirically, remains tractable.



rate research

Read More

We consider the problem of generating randomized control sequences for complex networked systems typically actuated by human agents. Our approach leverages a concept known as control improvisation, which is based on a combination of data-driven learning and controller synthesis from formal specifications. We learn from existing data a generative model (for instance, an explicit-duration hidden Markov model, or EDHMM) and then supervise this model in order to guarantee that the generated sequences satisfy some desirable specifications given in Probabilistic Computation Tree Logic (PCTL). We present an implementation of our approach and apply it to the problem of mimicking the use of lighting appliances in a residential unit, with potential applications to home security and resource management. We present experimental results showing that our approach produces realistic control sequences, similar to recorded data based on human actuation, while satisfying suitable formal requirements.
Reinforcement learning (RL) is a promising approach and has limited success towards real-world applications, because ensuring safe exploration or facilitating adequate exploitation is a challenges for controlling robotic systems with unknown models and measurement uncertainties. Such a learning problem becomes even more intractable for complex tasks over continuous space (state-space and action-space). In this paper, we propose a learning-based control framework consisting of several aspects: (1) linear temporal logic (LTL) is leveraged to facilitate complex tasks over an infinite horizons which can be translated to a novel automaton structure; (2) we propose an innovative reward scheme for RL-agent with the formal guarantee such that global optimal policies maximize the probability of satisfying the LTL specifications; (3) based on a reward shaping technique, we develop a modular policy-gradient architecture utilizing the benefits of automaton structures to decompose overall tasks and facilitate the performance of learned controllers; (4) by incorporating Gaussian Processes (GPs) to estimate the uncertain dynamic systems, we synthesize a model-based safeguard using Exponential Control Barrier Functions (ECBFs) to address problems with high-order relative degrees. In addition, we utilize the properties of LTL automatons and ECBFs to construct a guiding process to further improve the efficiency of exploration. Finally, we demonstrate the effectiveness of the framework via several robotic environments. And we show such an ECBF-based modular deep RL algorithm achieves near-perfect success rates and guard safety with a high probability confidence during training.
While multiple studies have proposed methods for the formation control of unmanned aerial vehicles (UAV), the trajectories generated are generally unsuitable for tracking targets where the optimum coverage of the target by the formation is required at all times. We propose a path planning approach called the Flux Guided (FG) method, which generates collision-free trajectories while maximising the coverage of one or more targets. We show that by reformulating an existing least-squares flux minimisation problem as a constrained optimisation problem, the paths obtained are $1.5 times$ shorter and track directly toward the target. Also, we demonstrate that the scale of the formation can be controlled during flight, and that this feature can be used to track multiple scattered targets. The method is highly scalable since the planning algorithm is only required for a sub-set of UAVs on the open boundary of the formations surface. Finally, through simulating a 3d dynamic particle system that tracks the desired trajectories using a PID controller, we show that the resulting trajectories after time-optimal parameterisation are suitable for robotic controls.
Machine learning techniques have enabled robots to learn narrow, yet complex tasks and also perform broad, yet simple skills with a wide variety of objects. However, learning a model that can both perform complex tasks and generalize to previously unseen objects and goals remains a significant challenge. We study this challenge in the context of improvisational tool use: a robot is presented with novel objects and a user-specified goal (e.g., sweep some clutter into the dustpan), and must figure out, using only raw image observations, how to accomplish the goal using the available objects as tools. We approach this problem by training a model with both a visual and physical understanding of multi-object interactions, and develop a sampling-based optimizer that can leverage these interactions to accomplish tasks. We do so by combining diverse demonstration data with self-supervised interaction data, aiming to leverage the interaction data to build generalizable models and the demonstration data to guide the model-based RL planner to solve complex tasks. Our experiments show that our approach can solve a variety of complex tool use tasks from raw pixel inputs, outperforming both imitation learning and self-supervised learning individually. Furthermore, we show that the robot can perceive and use novel objects as tools, including objects that are not conventional tools, while also choosing dynamically to use or not use tools depending on whether or not they are required.
311 - Lei Zheng , Rui Yang , Zhixuan Wu 2021
In this paper, a safe and learning-based control framework for model predictive control (MPC) is proposed to optimize nonlinear systems with a gradient-free objective function under uncertain environmental disturbances. The control framework integrates a learning-based MPC with an auxiliary controller in a way of minimal intervention. The learning-based MPC augments the prior nominal model with incremental Gaussian Processes to learn the uncertain disturbances. The cross-entropy method (CEM) is utilized as the sampling-based optimizer for the MPC with a gradient-free objective function. A minimal intervention controller is devised with a control Lyapunov function and a control barrier function to guide the sampling process and endow the system with high probabilistic safety. The proposed algorithm shows a safe and adaptive control performance on a simulated quadrotor in the tasks of trajectory tracking and obstacle avoidance under uncertain wind disturbances.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا