Do you want to publish a course? Click here

Modeling Saturns D68 clumps as a co-orbital satellite system

107   0   0.0 ( 0 )
 Added by Joseph A'Hearn
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The D68 ringlet is the innermost feature in Saturns rings. Four clumps that appeared in D68 around 2014 remained evenly spaced about 30 degrees apart and moved very slowly relative to each other from 2014 up until the last measurements were taken in 2017. D68s narrowness and the distribution of clumps could either indicate that we have a collection of source bodies in a co-orbital configuration or imply that an outside force confines the observed dust and any source bodies. In this paper we explore the possibility that these four clumps arose from four source bodies in a co-orbital configuration. We find that there are no solutions with four masses that produce the observed spacings. We therefore consider whether an unseen fifth co-orbital object could account for the discrepancies in the angular separations and approach a stable stationary configuration. We find a range of solutions for five co-orbital objects where their mass ratios depend on the assumed location of the fifth mass. Numerical simulations of five co-orbitals are highly sensitive to initial conditions, especially for the range of masses we would expect the D68 clumps to have. The fragility of our D68 co-orbital system model implies that there is probably some outside force confining the material in this ringlet.



rate research

Read More

Saturns mid-sized moons (satellites) have a puzzling orbital configuration with trapping in mean-motion resonances with every other pairs (Mimas-Tethys 4:2 and Enceladus-Dione 2:1). To reproduce their current orbital configuration on the basis of Crida & Charnozs model of satellite formation from a hypothetical ancient massive rings, adjacent pairs must pass 1st-order mean-motion resonances without being trapped. The trapping could be avoided by fast orbital migration and/or excitation of the satellites eccentricity caused by gravitational interactions between the satellites and the rings (the disk), which are still unknown. In our research, we investigate the satellite orbital evolution due to interactions with the disk through full N-body simulations. We performed global high-resolution N-body simulations of a self-gravitating particle disk interacting with a single satellite. We used $N sim 10^5$ particles for the disk. Gravitational forces of all the particles and their inelastic collisions are taken into account. As a result, dense short-wavelength wake structure is created by the disk self-gravity and global spiral arms with $m sim$ a few is induced by the satellite. The self-gravity wakes regulate the orbital evolution of the satellite, which has been considered as a disk spreading mechanism but not as a driver for the orbital evolution. The self-gravity wake torque to the satellite is so effective that the satellite migration is much faster than that was predicted with the spiral arms torque. It provides a possible model to avoid the resonance capture of adjacent satellite pairs and establish the current orbital configuration of Saturns mid-sized satellites.
244 - Yukun Huang , Miao Li , Junfeng Li 2019
We find an interesting fact that fictitious retrograde co-orbitals of Saturn, or small bodies inside the retrograde 1:1 resonance with Saturn, are highly unstable in our numerical simulations. It is shown that in the presence of Jupiter, the retrograde co-orbitals will get ejected from Saturns co-orbital space within a timescale of 10 Myr. This scenario reminds us of the instability of Saturn Trojans caused by both the Great Inequality and the secular resonances. Therefore, we carry out in-depth inspections on both mechanisms and prove that the retrograde resonance overlap, raised by Great Inequality, cannot serve as an explanation for the instability of retrograde co-orbitals, due to the weakness of the retrograde 2:5 resonance with Jupiter at a low eccentricity. However, we discover that both $ u_5$ and $ u_6$ secular resonances contribute to the slow growth of the eccentricity, therefore, are possibly the primary causes of the instability inside Saturns retrograde co-orbital space.
The Neptunian satellite system is unusual. The major satellites of Jupiter, Saturn, and Uranus are all in prograde, low-inclination orbits. Neptune on the other hand, has the fewest satellites, and most of the systems mass is within one irregular satellite, Triton. Triton was most likely captured by Neptune and destroyed the primordial regular satellite system. We investigate the interactions between a newly captured Triton and a prior Neptunian satellite system. We find that a prior satellite system with a mass ratio similar to the Uranian system or smaller has a substantial likelihood of reproducing the current Neptunian system, while a more massive system has a low probability of leading to the current configuration. Moreover, Tritons interaction with a prior satellite system may offer a mechanism to decrease its high initial semimajor axis fast enough to preserve small irregular satellites (Nereid-like) that might otherwise be lost during a prolonged Triton circularization via tides alone.
Over the last eight years, the Visual and Infrared Mapping Spectrometer (VIMS) aboard the Cassini orbiter has returned hyperspectral images in the 0.35-5.1 micron range of the icy satellites and rings of Saturn. These very different objects show significant variations in surface composition, roughness and regolith grain size as a result of their evolutionary histories, endogenic processes and interactions with exogenic particles. The distributions of surface water ice and chromophores, i.e. organic and non-icy materials, across the saturnian system, are traced using specific spectral indicators (spectral slopes and absorption band depths) obtained from rings mosaics and disk-integrated satellites observations by VIMS.
The Cassini spacecraft found a new and unique ring that shares the trajectory of Janus and Epimetheus, co-orbital satellites of Saturn. Performing image analysis, we found this to be a continuous ring. Its width is between 30% and 50% larger than previously announced. We also verified that the ring behaves like a firefly. It can only be seen from time to time, when Cassini, the ring and the Sun are arranged in a particular geometric configuration, in very high phase angles. Otherwise, it remains in the dark, not visible to Cassinis cameras. Through numerical simulations, we found a very short lifetime for the ring particles, less than a couple of decades. Consequently, the ring needs to be constantly replenished. Using a model of particles production due to micrometeorites impacts on the surfaces of Janus and Epimetheus, we reproduce the ring, explaining its existence and the firefly behavior.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا