Do you want to publish a course? Click here

Tritons Evolution with a Primordial Neptunian Satellite System

275   0   0.0 ( 0 )
 Added by Raluca Rufu
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Neptunian satellite system is unusual. The major satellites of Jupiter, Saturn, and Uranus are all in prograde, low-inclination orbits. Neptune on the other hand, has the fewest satellites, and most of the systems mass is within one irregular satellite, Triton. Triton was most likely captured by Neptune and destroyed the primordial regular satellite system. We investigate the interactions between a newly captured Triton and a prior Neptunian satellite system. We find that a prior satellite system with a mass ratio similar to the Uranian system or smaller has a substantial likelihood of reproducing the current Neptunian system, while a more massive system has a low probability of leading to the current configuration. Moreover, Tritons interaction with a prior satellite system may offer a mechanism to decrease its high initial semimajor axis fast enough to preserve small irregular satellites (Nereid-like) that might otherwise be lost during a prolonged Triton circularization via tides alone.



rate research

Read More

In the current model of early Solar System evolution, the stable members of the Jovian and Neptunian Trojan populations were captured into resonance from the leftover reservoir of planetesimals during the outward migration of the giant planets. As a result, both Jovian and Neptunian Trojans share a common origin with the primordial disk population, whose other surviving members constitute todays trans-Neptunian object (TNO) populations. The cold classical TNOs are ultra-red, while the dynamically excited hot population of TNOs contains a mixture of ultra-red and blue objects. In contrast, Jovian and Neptunian Trojans are observed to be blue. While the absence of ultra-red Jovian Trojans can be readily explained by the sublimation of volatile material from their surfaces due to the high flux of solar radiation at 5AU, the lack of ultra-red Neptunian Trojans presents both a puzzle and a challenge to formation models. In this work we report the discovery by the Dark Energy Survey (DES) of two new dynamically stable L4 Neptunian Trojans,2013 VX30 and 2014 UU240, both with inclinations i >30 degrees, making them the highest-inclination known stable Neptunian Trojans. We have measured the colors of these and three other dynamically stable Neptunian Trojans previously observed by DES, and find that 2013 VX30 is ultra-red, the first such Neptunian Trojan in its class. As such, 2013 VX30 may be a missing link between the Trojan and TNO populations. Using a simulation of the DES TNO detection efficiency, we find that there are 162 +/- 73 Trojans with Hr < 10 at the L4 Lagrange point of Neptune. Moreover, the blue-to-red Neptunian Trojan population ratio should be higher than 17:1. Based on this result, we discuss the possible origin of the ultra-red Neptunian Trojan population and its implications for the formation history of Neptunian Trojans.
300 - S. I. Ipatov 2018
The formation of trans-Neptunian satellite systems at the stage of rarefied preplanetesimals (i.e., condensations of dust and/or objects less than 1 m in diameter) is discussed. It is assumed that trans-Neptunian objects (including those with satellites) could form as a result of compression of parental rarefied preplanetesimals. The formulas for calculating the angular momentum of two colliding condensations with respect to their center of mass, which were applied earlier in (Ipatov, 2010) in the comparison of such momenta with the angular momenta of observed satellite systems, are used to estimate the angular momenta of condensations needed to form satellite systems. It is demonstrated that the angular velocities of condensations used in (Nesvorny et al., 2010) as the initial data in the computer simulation of compression of rarefied preplanetesimals and subsequent formation of trans-Neptunian satellite systems may be obtained in collisions of preplanetesimals with their radii comparable to the corresponding Hill radii. For example, these angular velocities are in the range of possible values of angular velocities of a parental rarefied preplanetesimal formed as a result of a merger of two colliding rarefied preplanetesimals that moved in circular heliocentric orbits before a collision. Some rarefied preplanetesimals formed as a result of collision of preplanetesimals in the region of formation of solid small bodies acquire such angular momenta that are sufficient to form satellite systems of small bodies. It is likely that the ratio of the number of rarefied preplanetesimals with such angular momenta to the total number of rarefied preplanetesimals producing classical trans-Neptunian objects with diameters larger than 100 km was 0.45 (the initial fraction of satellite systems among all classical trans-Neptunian objects).
The D68 ringlet is the innermost feature in Saturns rings. Four clumps that appeared in D68 around 2014 remained evenly spaced about 30 degrees apart and moved very slowly relative to each other from 2014 up until the last measurements were taken in 2017. D68s narrowness and the distribution of clumps could either indicate that we have a collection of source bodies in a co-orbital configuration or imply that an outside force confines the observed dust and any source bodies. In this paper we explore the possibility that these four clumps arose from four source bodies in a co-orbital configuration. We find that there are no solutions with four masses that produce the observed spacings. We therefore consider whether an unseen fifth co-orbital object could account for the discrepancies in the angular separations and approach a stable stationary configuration. We find a range of solutions for five co-orbital objects where their mass ratios depend on the assumed location of the fifth mass. Numerical simulations of five co-orbitals are highly sensitive to initial conditions, especially for the range of masses we would expect the D68 clumps to have. The fragility of our D68 co-orbital system model implies that there is probably some outside force confining the material in this ringlet.
We present the results of an investigation to determine the longitudinal (zonal) distributions and temporal evolution of ices on the surface of Triton. Between 2002 and 2014, we obtained 63 nights of near-infrared (0.67-2.55 $mu$m) spectra using the SpeX instrument at NASAs Infrared Telescope Facility (IRTF). Triton has spectral features in this wavelength region from N$_2$, CO, CH$_4$, CO$_2$, and H$_2$O. Absorption features of ethane (C$_2$H$_6$) and $^{13}$CO are coincident at 2.405 $mu$m, a feature that we detect in our spectra. We calculated the integrated band area (or fractional band depth in the case of H$_2$O) in each nightly average spectrum, constructed longitudinal distributions, and quantified temporal evolution for each of the chosen absorption bands. The volatile ices (N$_2$, CO, CH$_4$) show significant variability over one Triton rotation and have well-constrained longitudes of peak absorption. The non-volatile ices (CO$_2$, H$_2$O) show poorly-constrained peak longitudes and little variability. The longitudinal distribution of the 2.405 $mu$m band shows little variability over one Triton rotation and is 97$pm$44$^{circ}$ and 92$pm$44$^{circ}$ out of phase with the 1.58 $mu$m and 2.35 $mu$m CO bands, respectively. This evidence indicates that the 2.405 $mu$m band is due to absorption from non-volatile ethane. CH$_4$ absorption increased over the period of the observations while absorption from all other ices showed no statistically signifcant change. We conclude from these results that the southern latitudes of Triton are currently dominated by non-volatile ices and as the sub-solar latitude migrates northwards, a larger quantity of volatile ice is coming into view.
We carried out an extensive analysis of the stability of the outer solar system, making use of the frequency analysis technique over short-term integrations of nearly a hundred thousand test particles, as well as a statistical analysis of 200, 1 Gyr long numerical simulations, which consider the mutual perturbations of the giant planets and the 34 largest trans-Neptunian objects (we have called all 34 objects ``dwarf planets, DPs, even if probably only the largest of them are true DPs). From the frequency analysis we produced statistical diffusion maps for a wide region of the $a$-$e$ phase-space plane; we also present the average diffusion time for orbits as a function of perihelion. We later turned our attention to the 34 DPs making an individualized analysis for each of them and producing a first approximation of their future stability. From the 200 distinct realizations of the orbital evolution of the 34 DPs, we classified the sample into three categories including 17 Stable, 11 Unstable, and 6 Resonant objects each; we also found that statistically, 2 objects from the sample will leave the trans-Neptunian region within the next Gyr, most likely being ejected from the solar system, but with a non-negligible probability of going inside the orbit of Neptune, either to collide with a giant planet or even falling to the inner solar system, where our simulations are no longer able to resolve their continuous evolution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا