No Arabic abstract
Saturns mid-sized moons (satellites) have a puzzling orbital configuration with trapping in mean-motion resonances with every other pairs (Mimas-Tethys 4:2 and Enceladus-Dione 2:1). To reproduce their current orbital configuration on the basis of Crida & Charnozs model of satellite formation from a hypothetical ancient massive rings, adjacent pairs must pass 1st-order mean-motion resonances without being trapped. The trapping could be avoided by fast orbital migration and/or excitation of the satellites eccentricity caused by gravitational interactions between the satellites and the rings (the disk), which are still unknown. In our research, we investigate the satellite orbital evolution due to interactions with the disk through full N-body simulations. We performed global high-resolution N-body simulations of a self-gravitating particle disk interacting with a single satellite. We used $N sim 10^5$ particles for the disk. Gravitational forces of all the particles and their inelastic collisions are taken into account. As a result, dense short-wavelength wake structure is created by the disk self-gravity and global spiral arms with $m sim$ a few is induced by the satellite. The self-gravity wakes regulate the orbital evolution of the satellite, which has been considered as a disk spreading mechanism but not as a driver for the orbital evolution. The self-gravity wake torque to the satellite is so effective that the satellite migration is much faster than that was predicted with the spiral arms torque. It provides a possible model to avoid the resonance capture of adjacent satellite pairs and establish the current orbital configuration of Saturns mid-sized satellites.
The $mu$ and $ u$ rings of Uranus form a secondary ring-moon system with the satellites Puck, Mab,Portia, and Rosalind. These rings are tenuous and dominated by micrometric particles, which can be strongly disturbed by the solar radiation pressure. We performed a numerical analysis of the orbital evolution of a sample of particles under the influence of the solar radiation force and the planetary oblateness, combined with the gravitational interaction with the close satellites. The most likely result is a collisions and the deposition of particles onto the surface of these satellites. Since this mechanism tends to cause a depletion of material of the rings, we investigate additional sources for these dust particles. Adopting a rough estimative of the flux of interplanetary meteoroids, we found that the ejections from Mab could generate a ring with optical depth comparable with the observations. A similar analysis was carried out for the F-ring dust band. The damping due to the Saturns oblateness prevents the overstated changes of the eccentricity and increases in the lifetime of the particles. Therewithal photometric study of the F-ring using Cassini images revealed that substantial secular increase in the brightness of Saturns F ring has occurred in the last 25 years. The shapes of the phase curves from Cassini and Voyager are similar, suggesting that although the number of dust particles has increased, the overall distribution of sizes is unchanged. The dust bands that permeate the rings of Uranus were observed late in 2007 during the equinox, when the Sun crossed the ring plane. Images taken with the VLT were processed and then combined to result in long-exposure frames. For each frame, the north and south radial profiles were extracted. They will be used to develop a photometric model.
Over the past few decades, various conjectures were advanced that Saturns rings are Cantor-like sets, although no convincing fractal analysis of actual images has ever appeared. We focus on the images sent by the Cassini spacecraft mission: slide #42 Mapping Clumps in Saturns Rings and slide #54 Scattered Sunshine. Using the box-counting method, we determine the fractal dimension of rings seen here (and in several other images from the same source) to be consistently about 1.6~1.7. This supports many conjectures put forth over several decades that Saturns rings are indeed fractal.
In the last few years Cassini-VIMS, the Visible and Infared Mapping Spectrometer, returned to us a comprehensive view of the Saturns icy satellites and rings. After having analyzed the satellites spectral properties (Filacchione et al. (2007a)) and their distribution across the satellites hemispheres (Filacchione et al. (2010)), we proceed in this paper to investigate the radial variability of icy satellites (principal and minor) and main rings average spectral properties. This analysis is done by using 2,264 disk-integrated observations of the satellites and a 12x700 pixels-wide rings radial mosaic acquired with a spatial resolution of about 125 km/pixel. The comparative analysis of these data allows us to retrieve the amount of both water ice and red contaminant materials distributed across Saturns system and the typical surface regolith grain sizes. These measurements highlight very striking differences in the population here analyzed, which vary from the almost uncontaminated and water ice-rich surfaces of Enceladus and Calypso to the metal/organic-rich and red surfaces of Iapetus leading hemisphere and Phoebe. Rings spectra appear more red than the icy satellites in the visible range but show more intense 1.5-2.0 micron band depths. The correlations among spectral slopes, band depths, visual albedo and phase permit us to cluster the saturnian population in different spectral classes which are detected not only among the principal satellites and rings but among co-orbital minor moons as well. Finally, we have applied Hapkes theory to retrieve the best spectral fits to Saturns inner regular satellites using the same methodology applied previously for Rhea data discussed in Ciarniello et al. (2011).
The seasonal evolution of Saturns polar atmospheric temperatures and hydrocarbon composition is derived from a decade of Cassini Composite Infrared Spectrometer (CIRS) 7-16 $mu$m thermal infrared spectroscopy. We construct a near-continuous record of atmospheric variability poleward of 60$^circ$ from northern winter/southern summer (2004, $L_s=293^circ$) through the equinox (2009, $L_s=0^circ$) to northern spring/southern autumn (2014, $L_s=56^circ$). The hot tropospheric polar cyclones and the hexagonal shape of the north polar belt are both persistent features throughout the decade of observations. The hexagon vertices rotated westward by $approx30^circ$ longitude between March 2007 and April 2013, confirming that they are not stationary in the Voyager-defined System III longitude system as previously thought. The extended region of south polar stratospheric emission has cooled dramatically poleward of the sharp temperature gradient near 75$^circ$S, coinciding with a depletion in the abundances of acetylene and ethane, and suggestive of stratospheric upwelling with vertical wind speeds of $wapprox+0.1$ mm/s. This is mirrored by a general warming of the northern polar stratosphere and an enhancement in acetylene and ethane abundances that appears to be most intense poleward of 75$^circ$N, suggesting subsidence at $wapprox-0.15$ mm/s. However, the sharp gradient in stratospheric emission expected to form near 75$^circ$N by northern summer solstice (2017, $L_s=90^circ$) has not yet been observed, so we continue to await the development of a northern summer stratospheric vortex. North polar minima in tropospheric and stratospheric temperatures were detected in 2008-2010 (lagging one season, or 6-8 years, behind winter solstice); south polar maxima appear to have occurred before the start of the Cassini observations (1-2 years after summer solstice). [Abridged]
Saturns main rings exhibit variations in both their opacity and spectral properties on a broad range of spatial scales, and the correlations between these parameters can provide insights into the processes that shape the composition and dynamics of the rings. The Visual and Infrared Mapping Spectrometer (VIMS) instrument onboard the Cassini Spacecraft has obtained spectra of the rings between 0.35 and 5.2 microns with sufficient spatial resolution to discern variations on scales below 200 km. These relatively high-resolution spectral data reveal that both the depths of the near-infrared water-ice absorption bands and the visible spectral slopes are often correlated with structural parameters such as the rings optical depth. Using a simplified model for the ring-particles regolith properties, we have begun to disentangle the trends due to changes in the gross composition of the ring particles from those that may be due to shifts in the texture of the ring particles regolith. Consistent with previous studies, this analysis finds that the C ring and the Cassini Division possess enhanced concentrations of a contaminant that absorbs light over a broad range of wavelengths. On the other hand, a second contaminant that preferentially absorbs at short visible and near-ultraviolet wavelengths is found to be more evenly distributed throughout the rings. The optical activity of this short-wavelength absorber increases in the inner B ring inwards of 100,000 km from Saturn center, which may provide clues to the origin of this contaminant. The spectral variations identified as shifts in the regolith texture are in some places clearly correlated with the rings optical depth, and in other locations they appear to be associated with the disturbances generated by strong mean-motion resonances with Saturns various moons.