Do you want to publish a course? Click here

Retrospective Approximation for Smooth Stochastic Optimization

298   0   0.0 ( 0 )
 Added by David Newton
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We consider stochastic optimization problems where a smooth (and potentially nonconvex) objective is to be minimized using a stochastic first-order oracle. These type of problems arise in many settings from simulation optimization to deep learning. We present Retrospective Approximation (RA) as a universal sequential sample-average approximation (SAA) paradigm where during each iteration $k$, a sample-path approximation problem is implicitly generated using an adapted sample size $M_k$, and solved (with prior solutions as warm start) to an adapted error tolerance $epsilon_k$, using a deterministic method such as the line search quasi-Newton method. The principal advantage of RA is that decouples optimization from stochastic approximation, allowing the direct adoption of existing deterministic algorithms without modification, thus mitigating the need to redesign algorithms for the stochastic context. A second advantage is the obvious manner in which RA lends itself to parallelization. We identify conditions on ${M_k, k geq 1}$ and ${epsilon_k, kgeq 1}$ that ensure almost sure convergence and convergence in $L_1$-norm, along with optimal iteration and work complexity rates. We illustrate the performance of RA with line-search quasi-Newton on an ill-conditioned least squares problem, as well as an image classification problem using a deep convolutional neural net.



rate research

Read More

In this paper, we consider multi-stage stochastic optimization problems with convex objectives and conic constraints at each stage. We present a new stochastic first-order method, namely the dynamic stochastic approximation (DSA) algorithm, for solving these types of stochastic optimization problems. We show that DSA can achieve an optimal ${cal O}(1/epsilon^4)$ rate of convergence in terms of the total number of required scenarios when applied to a three-stage stochastic optimization problem. We further show that this rate of convergence can be improved to ${cal O}(1/epsilon^2)$ when the objective function is strongly convex. We also discuss variants of DSA for solving more general multi-stage stochastic optimization problems with the number of stages $T > 3$. The developed DSA algorithms only need to go through the scenario tree once in order to compute an $epsilon$-solution of the multi-stage stochastic optimization problem. As a result, the memory required by DSA only grows linearly with respect to the number of stages. To the best of our knowledge, this is the first time that stochastic approximation type methods are generalized for multi-stage stochastic optimization with $T ge 3$.
We introduce a class of stochastic algorithms for minimizing weakly convex functions over proximally smooth sets. As their main building blocks, the algorithms use simplified models of the objective function and the constraint set, along with a retraction operation to restore feasibility. All the proposed methods come equipped with a finite time efficiency guarantee in terms of a natural stationarity measure. We discuss consequences for nonsmooth optimization over smooth manifolds and over sets cut out by weakly-convex inequalities.
Consider the stochastic composition optimization problem where the objective is a composition of two expected-value functions. We propose a new stochastic first-order method, namely the accelerated stochastic compositional proximal gradient (ASC-PG) method, which updates based on queries to the sampling oracle using two different timescales. The ASC-PG is the first proximal gradient method for the stochastic composition problem that can deal with nonsmooth regularization penalty. We show that the ASC-PG exhibits faster convergence than the best known algorithms, and that it achieves the optimal sample-error complexity in several important special cases. We further demonstrate the application of ASC-PG to reinforcement learning and conduct numerical experiments.
This paper considers the problem of minimizing an expectation function over a closed convex set, coupled with a {color{black} functional or expectation} constraint on either decision variables or problem parameters. We first present a new stochastic approximation (SA) type algorithm, namely the cooperative SA (CSA), to handle problems with the constraint on devision variables. We show that this algorithm exhibits the optimal ${cal O}(1/epsilon^2)$ rate of convergence, in terms of both optimality gap and constraint violation, when the objective and constraint functions are generally convex, where $epsilon$ denotes the optimality gap and infeasibility. Moreover, we show that this rate of convergence can be improved to ${cal O}(1/epsilon)$ if the objective and constraint functions are strongly convex. We then present a variant of CSA, namely the cooperative stochastic parameter approximation (CSPA) algorithm, to deal with the situation when the constraint is defined over problem parameters and show that it exhibits similar optimal rate of convergence to CSA. It is worth noting that CSA and CSPA are primal methods which do not require the iterations on the dual space and/or the estimation on the size of the dual variables. To the best of our knowledge, this is the first time that such optimal SA methods for solving functional or expectation constrained stochastic optimization are presented in the literature.
In this work, we present a globalized stochastic semismooth Newton method for solving stochastic optimization problems involving smooth nonconvex and nonsmooth convex terms in the objective function. We assume that only noisy gradient and Hessian information of the smooth part of the objective function is available via calling stochastic first and second order oracles. The proposed method can be seen as a hybrid approach combining stochastic semismooth Newton steps and stochastic proximal gradient steps. Two inexact growth conditions are incorporated to monitor the convergence and the acceptance of the semismooth Newton steps and it is shown that the algorithm converges globally to stationary points in expectation. Moreover, under standard assumptions and utilizing random matrix concentration inequalities, we prove that the proposed approach locally turns into a pure stochastic semismooth Newton method and converges r-superlinearly with high probability. We present numerical results and comparisons on $ell_1$-regularized logistic regression and nonconvex binary classification that demonstrate the efficiency of our algorithm.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا