No Arabic abstract
Massive MIMO wireless FDD systems are often confronted by the challenge to efficiently obtain downlink channel state information (CSI). Previous works have demonstrated the potential in CSI encoding and recovery by take advantage of uplink/downlink reciprocity between their CSI magnitudes. However, such a framework separately encodes CSI phase and magnitude. To improve CSI encoding, we propose a learning-based framework based on limited CSI feedback and magnitude-aided information. Moving beyond previous works, our proposed framework with a modified loss function enables end-to-end learning to jointly optimize the CSI magnitude and phase recovery performance. Simulations show that the framework outperforms alternate approaches for phase recovery over overall CSI recovery in indoor and outdoor scenarios.
This paper investigates the two-timescale transmission design for reconfigurable intelligent surface (RIS)-aided massive multiple-input multiple-output (MIMO) systems, where the beamforming at the base station (BS) is adapted to the rapidly-changing instantaneous channel state information (CSI), while the passive beamforming at the RIS is adapted to the slowly-changing statistical CSI. Specifically, we first propose a linear minimum mean square error (LMMSE) estimator to obtain the aggregated channel from the users to the BS in each channel coherence interval. Based on the estimated channel, we apply the low-complexity maximal ratio combining (MRC) beamforming at the BS, and then derive the ergodic achievable rate in a closed form expression. To draw design insights, we perform a detailed theoretical analysis departing from the derived ergodic achievable rate. If the BS-RIS channel is Rician distributed, we prove that the transmit power can be scaled proportionally to $1/M$, as the number of BS antennas, $M$, grows to infinity while maintaining a non-zero rate. If the BS-RIS channel is Rayleigh distributed, the transmit power can be scaled either proportionally to $1/sqrt{M}$ as $M$ grows large, or proportionally to $1/N$ as the number of reflecting elements, $N$, grows large, while still maintaining a non-zero rate. By capitalizing on the derived expression of the data rate under the statistical knowledge of the CSI, we maximize the minimum user rate by designing the passive beamforming at the RIS. Numerical results confirm that, even in the presence of imperfect CSI, the integration of an RIS in massive MIMO systems results in promising performance gains. In addition, the obtained results reveal that it is favorable to place the RIS close to the users rather than close to the BS.
To fully exploit the advantages of massive multiple-input multiple-output (m-MIMO), accurate channel state information (CSI) is required at the transmitter. However, excessive CSI feedback for large antenna arrays is inefficient and thus undesirable in practical applications. By exploiting the inherent correlation characteristics of complex-valued channel responses in the angular-delay domain, we propose a novel neural network (NN) architecture, namely ENet, for CSI compression and feedback in m-MIMO. Even if the ENet processes the real and imaginary parts of the CSI values separately, its special structure enables the network trained for the real part only to be reused for the imaginary part. The proposed ENet shows enhanced performance with the network size reduced by nearly an order of magnitude compared to the existing NN-based solutions. Experimental results verify the effectiveness of the proposed ENet.
Channel estimation is one of the key issues in practical massive multiple-input multiple-output (MIMO) systems. Compared with conventional estimation algorithms, deep learning (DL) based ones have exhibited great potential in terms of performance and complexity. In this paper, an attention mechanism, exploiting the channel distribution characteristics, is proposed to improve the estimation accuracy of highly separable channels with narrow angular spread by realizing the divide-and-conquer policy. Specifically, we introduce a novel attention-aided DL channel estimation framework for conventional massive MIMO systems and devise an embedding method to effectively integrate the attention mechanism into the fully connected neural network for the hybrid analog-digital (HAD) architecture. Simulation results show that in both scenarios, the channel estimation performance is significantly improved with the aid of attention at the cost of small complexity overhead. Furthermore, strong robustness under different system and channel parameters can be achieved by the proposed approach, which further strengthens its practical value. We also investigate the distributions of learned attention maps to reveal the role of attention, which endows the proposed approach with a certain degree of interpretability.
Massive multiple-input multiple-output (MIMO) is one of the key techniques to achieve better spectrum and energy efficiency in 5G system. The channel state information (CSI) needs to be fed back from the user equipment to the base station in frequency division duplexing (FDD) mode. However, the overhead of the direct feedback is unacceptable due to the large antenna array in massive MIMO system. Recently, deep learning is widely adopted to the compressed CSI feedback task and proved to be effective. In this paper, a novel network named aggregated channel reconstruction network (ACRNet) is designed to boost the feedback performance with network aggregation and parametric rectified linear unit (PReLU) activation. The practical deployment of the feedback network in the communication system is also considered. Specifically, the elastic feedback scheme is proposed to flexibly adapt the network to meet different resource limitations. Besides, the network binarization technique is combined with the feature quantization for lightweight and practical deployment. Experiments show that the proposed ACRNet outperforms loads of previous state-of-the-art networks, providing a neat feedback solution with high performance, low cost and impressive flexibility.
Cell-free (CF) massive multiple-input multiple-output (MIMO) is a promising solution to provide uniform good performance for unmanned aerial vehicle (UAV) communications. In this paper, we propose the UAV communication with wireless power transfer (WPT) aided CF massive MIMO systems, where the harvested energy (HE) from the downlink WPT is used to support both uplink data and pilot transmission. We derive novel closed-form downlink HE and uplink spectral efficiency (SE) expressions that take hardware impairments of UAV into account. UAV communications with current small cell (SC) and cellular massive MIMO enabled WPT systems are also considered for comparison. It is significant to show that CF massive MIMO achieves two and five times higher 95%-likely uplink SE than the ones of SC and cellular massive MIMO, respectively. Besides, the large-scale fading decoding receiver cooperation can reduce the interference of the terrestrial user. Moreover, the maximum SE can be achieved by changing the time-splitting fraction. We prove that the optimal time-splitting fraction for maximum SE is determined by the number of antennas, altitude and hardware quality factor of UAVs. Furthermore, we propose three UAV trajectory design schemes to improve the SE. It is interesting that the angle search scheme performs best than both AP search and line path schemes. Finally, simulation results are presented to validate the accuracy of our expressions.