Do you want to publish a course? Click here

Two-Timescale Design for Reconfigurable Intelligent Surface-Aided Massive MIMO Systems with Imperfect CSI

112   0   0.0 ( 0 )
 Added by Cunhua Pan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper investigates the two-timescale transmission design for reconfigurable intelligent surface (RIS)-aided massive multiple-input multiple-output (MIMO) systems, where the beamforming at the base station (BS) is adapted to the rapidly-changing instantaneous channel state information (CSI), while the passive beamforming at the RIS is adapted to the slowly-changing statistical CSI. Specifically, we first propose a linear minimum mean square error (LMMSE) estimator to obtain the aggregated channel from the users to the BS in each channel coherence interval. Based on the estimated channel, we apply the low-complexity maximal ratio combining (MRC) beamforming at the BS, and then derive the ergodic achievable rate in a closed form expression. To draw design insights, we perform a detailed theoretical analysis departing from the derived ergodic achievable rate. If the BS-RIS channel is Rician distributed, we prove that the transmit power can be scaled proportionally to $1/M$, as the number of BS antennas, $M$, grows to infinity while maintaining a non-zero rate. If the BS-RIS channel is Rayleigh distributed, the transmit power can be scaled either proportionally to $1/sqrt{M}$ as $M$ grows large, or proportionally to $1/N$ as the number of reflecting elements, $N$, grows large, while still maintaining a non-zero rate. By capitalizing on the derived expression of the data rate under the statistical knowledge of the CSI, we maximize the minimum user rate by designing the passive beamforming at the RIS. Numerical results confirm that, even in the presence of imperfect CSI, the integration of an RIS in massive MIMO systems results in promising performance gains. In addition, the obtained results reveal that it is favorable to place the RIS close to the users rather than close to the BS.



rate research

Read More

We investigate a reconfigurable intelligent surface (RIS)-aided multi-user massive multiple-input multi-output (MIMO) system where low-resolution digital-analog converters (DACs) are configured at the base station (BS) in order to reduce the cost and power consumption. An approximate analytical expression for the downlink achievable rate is derived based on maximum ratio transmission (MRT) and additive quantization noise model (AQNM), and the rate maximization problem is solved by particle swarm optimization (PSO) method under both continuous phase shifts (CPSs) and discrete phase shifts (DPSs) at the RIS. Simulation results show that the downlink sum achievable rate tends to a constant with the increase of the number of quantization bits of DACs, and four quantization bits are enough to capture a large portion of the performance of the ideal perfect DACs case.
147 - Kangda Zhi , Cunhua Pan , Hong Ren 2021
This letter investigates the reconfigurable intelligent surface (RIS)-aided massive multiple-input multiple-output (MIMO) systems with a two-timescale design. First, the zero-forcing (ZF) detector is applied at the base station (BS) based on instantaneous aggregated CSI, which is the superposition of the direct channel and the cascaded user-RIS-BS channel. Then, by leveraging the channel statistical property, we derive the closed-form ergodic achievable rate expression. Using a gradient ascent method, we design the RIS passive beamforming only relying on the long-term statistical CSI. We prove that the ergodic rate can reap the gains on the order of $mathcal{O}left(log_{2}left(MNright)right)$, where $M$ and $N$ denote the number of BS antennas and RIS elements, respectively. We also prove the striking superiority of the considered RIS-aided system with ZF detectors over the RIS-free systems and RIS-aided systems with maximum-ratio combining (MRC).
113 - Kangda Zhi , Cunhua Pan , Hong Ren 2021
This paper investigates the reconfigurable reflecting surface (RIS)-aided multiple-input-single-output (MISO) systems with imperfect channel state information (CSI), where RIS-related channels are modeled by Rician fading. Considering the overhead and complexity in practical systems, we employ the low-complexity maximum ratio combining (MRC) beamforming at the base station (BS), and configure the phase shifts of the RIS based on long-term statistical CSI. Specifically, we first estimate the overall channel matrix based on the linear minimum mean square error (LMMSE) estimator, and evaluate the performance of MSE and normalized MSE (NMSE). Then, with the estimated channel, we derive the closed-form expressions of the ergodic rate. The derived expressions show that with Rician RIS-related channels, the rate can maintain at a non-zero value when the transmit power is scaled down proportionally to $1/M$ or $1/N^2$, where $M$ and $N$ are the number of antennas and reflecting elements, respectively. However, if all the RIS-related channels are fully Rayleigh, the transmit power of each user can only be scaled down proportionally to $1/sqrt{M}$ or $1/N$. Finally, numerical results verify the promising benefits from the RIS to traditional MISO systems.
This article aims to reduce huge pilot overhead when estimating the reconfigurable intelligent surface (RIS) relayed wireless channel. Motivated by the compelling grasp of deep learning in tackling nonlinear mapping problems, the proposed approach only activates a part of RIS elements and utilizes the corresponding cascaded channel estimate to predict another part. Through a synthetic deep neural network (DNN), the direct channel and active cascaded channel are first estimated sequentially, followed by the channel prediction for the inactive RIS elements. A three-stage training strategy is developed for this synthetic DNN. From simulation results, the proposed deep learning based approach is effective in reducing the pilot overhead and guaranteeing the reliable estimation accuracy.
Large intelligent surface (LIS) has recently emerged as a potential low-cost solution to reshape the wireless propagation environment for improving the spectral efficiency. In this paper, we consider a downlink millimeter-wave (mmWave) multiple-input-multiple-output (MIMO) system, where an LIS is deployed to assist the downlink data transmission from a base station (BS) to a user equipment (UE). Both the BS and the UE are equipped with a large number of antennas, and a hybrid analog/digital precoding/combining structure is used to reduce the hardware cost and energy consumption. We aim to maximize the spectral efficiency by jointly optimizing the LISs reflection coefficients and the hybrid precoder (combiner) at the BS (UE). To tackle this non-convex problem, we reformulate the complex optimization problem into a much more friendly optimization problem by exploiting the inherent structure of the effective (cascade) mmWave channel. A manifold optimization (MO)-based algorithm is then developed. Simulation results show that by carefully devising LISs reflection coefficients, our proposed method can help realize a favorable propagation environment with a small channel matrix condition number. Besides, it can achieve a performance comparable to those of state-of-the-art algorithms, while at a much lower computational complexity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا