No Arabic abstract
Channel estimation is one of the key issues in practical massive multiple-input multiple-output (MIMO) systems. Compared with conventional estimation algorithms, deep learning (DL) based ones have exhibited great potential in terms of performance and complexity. In this paper, an attention mechanism, exploiting the channel distribution characteristics, is proposed to improve the estimation accuracy of highly separable channels with narrow angular spread by realizing the divide-and-conquer policy. Specifically, we introduce a novel attention-aided DL channel estimation framework for conventional massive MIMO systems and devise an embedding method to effectively integrate the attention mechanism into the fully connected neural network for the hybrid analog-digital (HAD) architecture. Simulation results show that in both scenarios, the channel estimation performance is significantly improved with the aid of attention at the cost of small complexity overhead. Furthermore, strong robustness under different system and channel parameters can be achieved by the proposed approach, which further strengthens its practical value. We also investigate the distributions of learned attention maps to reveal the role of attention, which endows the proposed approach with a certain degree of interpretability.
Terahertz (THz) communication is considered to be a promising technology for future 6G network. To overcome the severe attenuation and relieve the high power consumption, massive MIMO with hybrid precoding has been widely considered for THz communication. However, accurate wideband channel estimation is challenging in THz massive MIMO systems. The existing wideband channel estimation schemes based on the ideal assumption of common sparse channel support will suffer from a severe performance loss due to the beam split effect. In this paper, we propose a beam split pattern detection based channel estimation scheme to realize reliable wideband channel estimation. Specifically, a comprehensive analysis on the angle-domain sparse structure of the wideband channel is provided by considering the beam split effect. Based on the analysis, we define a series of index sets called as beam split patterns, which are proved to have a one-to-one match to different physical channel directions. Inspired by this one-to-one match, we propose to estimate the physical channel direction by exploiting beam split patterns at first. Then, the sparse channel supports at different subcarriers can be obtained by utilizing a support detection window. This support detection window is generated by expanding the beam split pattern which is determined by the obtained physical channel direction. The above estimation procedure will be repeated path by path until all path components are estimated. The proposed scheme exploits the wideband channel property implied by the beam split effect, which can significantly improve the channel estimation accuracy. Simulation results show that the proposed scheme is able to achieve higher accuracy than existing schemes.
Reconfigurable intelligent surface (RIS) has been recognized as a potential technology for 5G beyond and attracted tremendous research attention. However, channel estimation in RIS-aided system is still a critical challenge due to the excessive amount of parameters in cascaded channel. The existing compressive sensing (CS)-based RIS estimation schemes only adopt incomplete sparsity, which induces redundant pilot consumption. In this paper, we exploit the specific triple-structured sparsity of the cascaded channel, i.e., the common column sparsity, structured row sparsity after offset compensation and the common offsets among all users. Then a novel multi-user joint estimation algorithm is proposed. Simulation results show that our approach can significantly reduce pilot overhead in both ULA and UPA scenarios.
Terahertz (THz) communication is widely considered as a key enabler for future 6G wireless systems. However, THz links are subject to high propagation losses and inter-symbol interference due to the frequency selectivity of the channel. Massive multiple-input multiple-output (MIMO) along with orthogonal frequency division multiplexing (OFDM) can be used to deal with these problems. Nevertheless, when the propagation delay across the base station (BS) antenna array exceeds the symbol period, the spatial response of the BS array varies across the OFDM subcarriers. This phenomenon, known as beam squint, renders narrowband combining approaches ineffective. Additionally, channel estimation becomes challenging in the absence of combining gain during the training stage. In this work, we address the channel estimation and hybrid combining problems in wideband THz massive MIMO with uniform planar arrays. Specifically, we first introduce a low-complexity beam squint mitigation scheme based on true-time-delay. Next, we propose a novel variant of the popular orthogonal matching pursuit (OMP) algorithm to accurately estimate the channel with low training overhead. Our channel estimation and hybrid combining schemes are analyzed both theoretically and numerically. Moreover, the proposed schemes are extended to the multi-antenna user case. Simulation results are provided showcasing the performance gains offered by our design compared to standard narrowband combining and OMP-based channel estimation.
In order to reduce hardware complexity and power consumption, massive multiple-input multiple-output (MIMO) systems employ low-resolution analog-to-digital converters (ADCs) to acquire quantized measurements $boldsymbol y$. This poses new challenges to the channel estimation problem, and the sparse prior on the channel coefficient vector $boldsymbol x$ in the angle domain is often used to compensate for the information lost during quantization. By interpreting the sparse prior from a probabilistic perspective, we can assume $boldsymbol x$ follows certain sparse prior distribution and recover it using approximate message passing (AMP). However, the distribution parameters are unknown in practice and need to be estimated. Due to the increased computational complexity in the quantization noise model, previous works either use an approximated noise model or manually tune the noise distribution parameters. In this paper, we treat both signals and parameters as random variables and recover them jointly within the AMP framework. The proposed approach leads to a much simpler parameter estimation method, allowing us to work with the quantization noise model directly. Experimental results show that the proposed approach achieves state-of-the-art performance under various noise levels and does not require parameter tuning, making it a practical and maintenance-free approach for channel estimation.
Obtaining channel covariance knowledge is of great importance in various Multiple-Input Multiple-Output MIMO communication applications, including channel estimation and covariance-based user grouping. In a massive MIMO system, covariance estimation proves to be challenging due to the large number of antennas ($Mgg 1$) employed in the base station and hence, a high signal dimension. In this case, the number of pilot transmissions $N$ becomes comparable to the number of antennas and standard estimators, such as the sample covariance, yield a poor estimate of the true covariance and are undesirable. In this paper, we propose a Maximum-Likelihood (ML) massive MIMO covariance estimator, based on a parametric representation of the channel angular spread function (ASF). The parametric representation emerges from super-resolving discrete ASF components via the well-known MUltiple SIgnal Classification (MUSIC) method plus approximating its continuous component using suitable limited-support density function. We maximize the likelihood function using a concave-convex procedure, which is initialized via a non-negative least-squares optimization problem. Our simulation results show that the proposed method outperforms the state of the art in various estimation quality metrics and for different sample size to signal dimension ($N/M$) ratios.