Do you want to publish a course? Click here

Existence and multiplicity of bound state solutions to a Kirchhoff type equation with a general nonlinearity

171   0   0.0 ( 0 )
 Added by Jianjun Zhang
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we consider the following Kirchhoff type equation $$ -left(a+ bint_{R^3}| abla u|^2right)triangle {u}+V(x)u=f(u),,,xinR^3, $$ where $a,b>0$ and $fin C(R,R)$, and the potential $Vin C^1(R^3,R)$ is positive, bounded and satisfies suitable decay assumptions. By using a new perturbation approach together with a new version of global compactness lemma of Kirchhoff type, we prove the existence and multiplicity of bound state solutions for the above problem with a general nonlinearity. We especially point out that neither the corresponding Ambrosetti-Rabinowitz condition nor any monotonicity assumption is required for $f$. Moreover, the potential $V$ may not be radially symmetry or coercive. As a prototype, the nonlinear term involves the power-type nonlinearity $f(u) = |u|^{p-2}u$ for $pin (2, 6)$. In particular, our results generalize and improve the results by Li and Ye (J.Differential Equations, 257(2014): 566-600), in the sense that the case $pin(2,3]$ is left open there.



rate research

Read More

By employing a novel perturbation approach and the method of invariant sets of descending flow, this manuscript investigates the existence and multiplicity of sign-changing solutions to a class of semilinear Kirchhoff equations in the following form $$ -left(a+ bint_{R^3}| abla u|^2right)triangle {u}+V(x)u=f(u),,,xinR^3, $$ where $a,b>0$ are constants, $Vin C(R^3,R)$, $fin C(R,R)$. The methodology proposed in the current paper is robust, in the sense that, the monotonicity condition for the nonlinearity $f$ and the coercivity condition of $V$ are not required. Our result improves the study made by Y. Deng, S. Peng and W. Shuai ({it J. Functional Analysis}, 3500-3527(2015)), in the sense that, in the present paper, the nonlinearities include the power-type case $f(u)=|u|^{p-2}u$ for $pin(2,4)$, in which case, it remains open in the existing literature that whether there exist infinitely many sign-changing solutions to the problem above without the coercivity condition of $V$. Moreover, {it energy doubling} is established, i.e., the energy of sign-changing solutions is strictly large than two times that of the ground state solutions for small $b>0$.
We investigate the existence of infinitely many radially symmetric solutions to the following problem $$(-Delta_p)^s u=g(u) textrm{ in } mathbb{R}^N, uin W^{s,p}(mathbb{R}^N),$$ where $sin (0,1)$, $2 leq p < infty$, $sp leq N $, $2 leq N in mathbb{N}$ and $(-Delta_p)^s$ is the fractional $p$-Laplacian operator. We treat both of cases $sp=N$ and $sp<N.$ The nonlinearity $g$ is a function of Berestycki-Lions type with critical exponential growth if $sp=N$ and critical polynomial growth if $sp<N$. We also prove the existence of a ground state solution for the same problem.
127 - Xiaoyu Zeng , Yimin Zhang 2017
For a class of Kirchhoff functional, we first give a complete classification with respect to the exponent $p$ for its $L^2$-normalized critical points, and show that the minimizer of the functional, if exists, is unique up to translations. Secondly, we search for the mountain pass type critical point for the functional on the $L^2$-normalized manifold, and also prove that this type critical point is unique up to translations. Our proof relies only on some simple energy estimates and avoids using the concentration-compactness principles. These conclusions extend some known results in previous papers.
In this paper, we study a class of nonlinear Choquard type equations involving a general nonlinearity. By using the method of penalization argument, we show that there exists a family of solutions having multiple concentration regions which concentrate at the minimum points of the potential $V$. Moreover, the monotonicity of $f(s)/s$ and the so-called Ambrosetti-Rabinowitz condition are not required.
71 - Wenjing Chen 2018
In this article, we establish the existence of solutions to the fractional $p-$Kirchhoff type equations with a generalized Choquard nonlinearities without assuming the Ambrosetti-Rabinowitz condition.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا